Navigation Links
Tune Your Brain to Hear Another in a Noisy Ambience

A major science prize, Pauline Ashley Prize 2007 was awarded to a UK researcher who has been in a quest for a region// in the human brain that could help to single out somebody's voice in a noisy environment like in a party or get together and also responsible for training the brain to hear better in such circumstances.

It has been noted that inability to identify or hear another person's voice in a noisy room is one of the most frequently encountered difficulty by over 9 million people with hearing impairment in Britain. A leading medical charity in UK, Deafness Research UK has awarded the prestigious Pauline Ashley Prize 2007 to Sam Irving, a dynamic researcher at the MRC Institute for Hearing Research in Nottingham.

Established in memory of the charity's founder, Lady Ashley of Stoke, The Pauline Ashley Prize , is awarded annually to a deserving talented young scientist who is at the initial stages of his/her career and undertaking research into deafness or conditions related to it such as tinnitus.

Most people with a hearing impairment have trouble picking out what someone is saying when they're in a noisy room. Parties or bars are some of the worst places because the level of background noise is high, and so scientists call this the "cocktail party effect".

To see what this was like, Irving wore an earplug in one ear for a week which gave him a one-sided hearing loss. He said: "It was hell - especially when I was in the pub with friends. The background hubbub of the bar seemed to be the same level as the people I was talking to so I could barely hear what they were saying and it took a huge effort of concentration to follow any conversation. During the week, I gave up and spent a lot of time at home on my own because it was so distressing and tiring to be with lots of people or in a noisy place."

Our ability to detect a particular sound in the middle of lots of noise relies on the fact that we have two ears, and each detects an individual sound at a slightly different time (a sound coming from the left will reach the left ear slightly faster than it reaches the right ear). This is known as binaural or "spatial" hearing because it helps us identify where a sound is coming from and to concentrate or focus our hearing on that particular sound.

But, if you have some form of hearing problem in at least one ear, this ability is disrupted and the brain struggles to tell one sound from another.

The key to understanding this ability lies in the brain. Scientists are currently trying to work out exactly what part of the brain is responsible and how it allows us to distinguish one sound from lots of noise. Early research has had some remarkable results.

Most mammals also have this ability and in 2006, scientists working in the Oxford Auditory Neuroscience Group found that spatial hearing in ferrets has the ability to bounce-back or adapt to a hearing loss over time. Their brains are being "trained" to cope with the hearing loss and distinguish sounds much better.

The Oxford study placed healthy ferrets in a "ring of sound" where a sound is played from one of 12 speakers placed in a circle around the ferret and their response is monitored to see if they can detect which speaker the sound is coming from. Ferrets with normal hearing are very good at this and have excellent spatial hearing.

The team then fitted each of the ferrets with a small earplug in one ear which blocks some of the sound and so mimics a hearing loss. They then got the ferrets to perform the same task twice a day for two weeks and made a startling discovery. At first, the ferrets' ability to identify where the sound was coming from was dramatically reduced (because their spatial hearing had been disrupted by the earplug) but after two weeks they regained their ability and by the end of the period were as good at detecting the location of the s ounds as they were before being fitted with an earplug.

Something in their brain was changing or adapting to the new situation and they were learning to compensate for the hearing loss.

Irving said: "When we switch on a bright light our eyes detect the increase in light levels and the brain sends a message to the eye to tell it to contract the pupil and let in less light. This is a feedback system where the brain is getting information from the eye about its surroundings, processing that information, and sending messages back to the eye to help it cope with different situations. We think something very similar is happening with the ear in spatial hearing."

"The brain is constantly monitoring the sounds around us and so knows what normal sound levels it would expect. When we introduce an earplug, it can detect the reduction in sound being received and we think it is actively sending messages back to the ear telling it how to cope with the new hearing loss, perhaps by stimulating or increasing the signal which is being blocked. It's compensating for the problem in a really clever way."

Irving is trying to locate the place in the brain which is channeling these feedback messages back to the ear.

"We already have a likely candidate called the OCB, the Olivocochlear Bundle, which is a part of the brain that we know is a centre of feedback information being transmitted from the brain back to the ear. We're now trying to work out if the OCB is responsible for spatial hearing in ferrets."

The Pauline Ashley Prize will allow Irving to work with a team led by Professor Charles Liberman at the Eaton Peabody Lab at MIT/Harvard, leading experts on the OCB system. His study will compare the performance of ferrets which have had their OCB removed with normal ferrets in the "ring of sound".

At the same time, Irving is conducting a study with human subjects who have volunteered to wear an earplug fo r five days. These subjects will be tested in a similar ring of sound and their performance measured over time. Early results show that humans also have the same ability to train their brain to cope with the hearing loss and become better at the task the longer they're wearing the earplug.

Irving said: "Understanding how this system works is fairly basic science, but will be vital in the future for engineering new ways of helping people with hearing impairment cope with difficult situations. They could be helped by computer generated training programs which run like regular computer games, but can target weaknesses in listening skills. By incorporating training exercises much like those performed by the ferrets, they can lead to auditory learning and an improved ability to listen."

Source-Eurekalert
'"/>




Related medicine news :

1. Use of Cellular Phones associated with Increased risk of Brain Tumors
2. Brain death – How to cope with it
3. “Brain fingerprinting”- The new lie detectr
4. Nasal Spray Could Take Drugs Direct to Brain.
5. Virus Combats Brain Tumour
6. Nasal Spray Could Take Drugs Directly to Brain
7. Control of anger disorder connected to Brain Dysfunction
8. High Levels of Protein Linked to Brain Shrinkage
9. Brain damage affects artistic skill
10. Brain cells protected by new compounds
11. Brain changes observed in people with sleep apnoea
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/7/2016)... ... December 07, 2016 , ... A. Kevin Spann Insurance, a ... throughout the Five Boroughs, is launching a charity drive to raise funds that will ... traditions and spirit of marines and Navy FMF Corpsmen. Working closely with the MCL, ...
(Date:12/7/2016)... , ... December 07, 2016 , ... ... to announce that its fully redesigned website, which launched October 17, 2016, features ... sleek responsive design and easy-to-navigate layout. Visitors and patients can discover the latest ...
(Date:12/7/2016)... ... December 07, 2016 , ... ... Texas, is condemning "scam operations" carried out by unethical locksmith companies and is ... operations to a halt. According to Texas Premier Locksmith, these fraudulent locksmith services ...
(Date:12/7/2016)... ... 2016 , ... "ProBrand Flip allows FCPX editors to create unique logo reveals ... of Pixel Film Studios. , ProBrand Flip includes 30 flip book reveal animations. Easily ... from a variety of flip book animations. In Addition, users can modify each preset ...
(Date:12/7/2016)... ... December 07, 2016 , ... ... Wellness (IFW) Program at Reproductive Medicine Associates of Connecticut (RMACT). McLaughlin brings nearly ... team of three acupuncturists to help patients realize their family building goals. ...
Breaking Medicine News(10 mins):
(Date:12/7/2016)... , Dec. 7,2016  Based on ... delivery industry, Frost & Sullivan recognizes Nemaura ... & Sullivan Award for Enabling Technology Leadership. ... the loopholes in traditional drug delivery technologies, ... liquid microneedle-based drug delivery technologies, Memspatch and ...
(Date:12/7/2016)... , Dec. 7, 2016  Ionis Pharmaceuticals, Inc. (NASDAQ: ... management will present a company overview at the BMO Capital Markets ... New York, NY . A live webcast ... section of the Ionis website.  The replay will be available within ... ...
(Date:12/7/2016)... , December 7, 2016 According ... Research titled , Global Market Study on Multiplex Detection Immunoassay: ... , the global multiplex detection immunoassay market is expected to ... 2016-2024. ... ,      ...
Breaking Medicine Technology: