Navigation Links
Reprogramming patients' cells offers powerful new tool for studying, treating blood diseases
Date:7/30/2013

First produced only in the past decade, human induced pluripotent stem cells (iPSCs) are capable of developing into many or even all human cell types. In new research, scientists reprogrammed skin cells from patients with rare blood disorders into iPSCs, highlighting the great promise of these cells in advancing understanding of those challenging diseasesand eventually in treating them.

"The technology for generating these cells has been moving very quickly," said hematologist Mitchell J. Weiss, M.D., Ph.D., corresponding author of two recent studies led by The Children's Hospital of Philadelphia (CHOP). "These investigations can allow us to better understand at a molecular level how blood cells go wrong in individual patientsand to test and generate innovative treatments for the patients' diseases."

Weiss, with Monica Bessler, M.D., Philip Mason, Ph.D., and Deborah L. French, Ph.D., all of CHOP, led a study on iPSCs and Diamond Blackfan anemia (DBA) published online June 6 in Blood. Another study by Weiss, French and colleagues in the same journal on April 25 focused on iPSCs in juvenile myelomonocytic leukemia (JMML).

In DBA, a mutation prevents a patient's bone marrow from producing normal quantities of red blood cells, resulting in severe, sometimes life-threatening anemia. This basic fact makes it difficult for researchers to discern the underlying mechanism of the disease: "It's very difficult to figure out what's wrong, because the bone marrow is nearly empty of these cells," said Bessler, the director of CHOP's Pediatric and Adult Comprehensive Bone Marrow Failure Center.

The study team removed fibroblasts (skin cells) from DBA patients, and in cell cultures, using proteins called transcription factors, reprogrammed the cells into iPSCs. As those iPSCs were stimulated to form blood tissues, like the patient's original mutated cells, they were deficient in producing red blood cells.

However, when the researchers corrected the genetic defect that causes DBA, the iPSCs developed into red blood cells in normal quantities. "This showed that in principle, it's possible to repair a patient's defective cells," said Weiss.

Weiss cautioned that this proof-of-principle finding is an early step, with many further studies to be done to verify if this approach will be safe and effective in clinical use.

However, he added, the patient-derived iPSCs are highly useful as a model cell system for investigating blood disorders. For instance, DBA is often puzzling, because two family members may have the same mutation, but only one may be affected by the disease. Because each set of iPSCs is specific to the individual from whom they are derived, researchers can compare the sets to identify molecular differences, such as a modifier gene active in one person but not the other.

Furthermore, the cells offer a renewable, long-lasting model system for testing drug candidates or gene modifications that may offer new treatments, personalized to individual patients.

The second study in Blood provides a concrete example of using iPSCs for drug testing, specifically for the often-aggressive childhood leukemia, JMML. First the study team generated iPSCs from two children with JMML, and then manipulated the iPSCs in cell cultures to produce myeloid cells that multiplied uncontrollably, much as the original JMML cells do.

They then tested the cells with two drugs, each able to inhibit a separate protein known to be highly active in JMML. One drug, an inhibitor of the MEK kinase, reduced the proliferation of cancerous cells in culture. "This provides a rationale for a potential targeted therapy for this specific subtype of JMML," said Weiss.

A stem cell core facility at CHOP, directed by study co-author Deborah French under the auspices of the hospital's Center for Cellular and Molecular Therapeutics, generated the iPSCs lines used in these studies. The facility's goal is to develop and maintain standardized iPSCs lines specific to a variety of rare inherited diseasesnot only DBA and JMML, but also dyskeratosis congenita, congenital dyserythropoietic anemia, thrombocytopenia absent radii (TAR), Glanzmann's thrombasthenia and Hermansky- Pudlak syndrome.

A longer-term goal, added Weiss, is for the iPSC lines to provide the raw materials for eventual cell therapies that could be applied to specific genetic disorders. "The more we learn about the molecular details of how these diseases develop, the closer we get to designing precisely targeted tools to benefit patients."


'/>"/>

Contact: John Ascenzi
Ascenzi@email.chop.edu
267-426-6055
Children's Hospital of Philadelphia
Source:Eurekalert

Related medicine news :

1. Reprogramming cells to fight diabetes
2. A relationship between cancer genes and the reprogramming gene SOX2 discovered
3. Doctors urged to talk to patients about parking cellphones
4. Inhalable gene therapy may help pulmonary arterial hypertension patients
5. Requiring some patients to get mental health treatment saves money
6. Looking at outcomes important to patients may improve results of cataract surgery
7. Diet Doc Medical Weight Loss Plans Now Encourages Natural Weight Loss With Fruits and Vegetables that Help Patients Lose Weight Fast and Live Longer
8. Itani Dental Explains How to Choose a Dentist for Special Needs Patients
9. Active Family Chiropractic of Gaithersburg, MD Introduces Nutra Disc, a New Dietary Supplement Designed to Support Patients’ Spinal Disc and Connective Tissue Health
10. Diet Doc Medical Weight Loss Plans Now Help Patients Eliminate Junk Food From Their Weight Loss Diets with Fat Burning Snack Ideas
11. PositiveSingles.com and The Henne Group Partner to Conduct a Study on HIV Patients in LA and DC in Hopes to Support the Creation of a Campaign in the Fight Against HIV
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/9/2016)... ... December 09, 2016 , ... Sober College, ... with the grand opening of the Sober College Robert Pfeifer Memorial Learning Center ... December 2-3, and was attended by an overwhelming amount of alumni, family, colleagues ...
(Date:12/9/2016)... , ... December 09, 2016 , ... "I had a ... inventor from Winchester, Va. "I thought that if the nebulizer had a more child-friendly ... than fearing them." , He developed the patent-pending NEBY to avoid the need to ...
(Date:12/8/2016)... , ... December 08, 2016 , ... ... Franchising Company LLC, announced the first national #QuackGivesBack campaign which supported local ... “This was our first franchise-wide Quack Gives Back initiative, and we’re ...
(Date:12/8/2016)... ... December 08, 2016 , ... With the increasing demand for dental implants, the ... (WIYM) campaign to inform dentists and patients about the safety issues related to dental ... market in the U.S. is projected to reach $6.4 billion in 2018 with more ...
(Date:12/8/2016)... ... 2016 , ... Catalent Pharma Solutions, the leading global provider ... products, today announced that it had joined the Pharmaceutical Supply Chain Initiative (PSCI). ... unite pharmaceutical and healthcare companies that share a vision of better, social, environmental ...
Breaking Medicine News(10 mins):
(Date:12/8/2016)... , Dec. 8, 2016  Eli Lilly and ... results of its phase 3 EXPEDITION3 trial at the ... meeting. As previously disclosed, solanezumab did not meet the ... of solanezumab initiated in people with mild dementia due ... regulatory submissions for solanezumab for the treatment of mild ...
(Date:12/8/2016)... de dezembro de 2016  A Mederi Therapeutics Inc . anunciou aprovação ... não cirúrgico para a doença do refluxo gastroesofágico (DRGE). Foto -  ... ... Live Stretta procedure performed and broadcast during the Chinese ... Union Hospital , ...
(Date:12/8/2016)... Pa. , Dec. 8, 2016  Pennsylvania ... Secretary of Drug and Alcohol Programs Gary ... and insomnia medications, known as benzodiazepines, developed with ... "Benzodiazepines are medications that are frequently prescribed ... when they are used with opioid pain medications, ...
Breaking Medicine Technology: