Navigation Links
Normalizing tumor blood vessels improves delivery of only the smallest nanomedicines
Date:4/9/2012

Combining two strategies designed to improve the results of cancer treatment antiangiogenesis drugs and nanomedicines may only be successful if the smallest nanomedicines are used. A new study from Massachusetts General Hospital (MGH) researchers, appearing in Nature Nanotechnology, finds that normalizing blood vessels within tumors, which improves the delivery of standard chemotherapy drugs, can block the delivery of larger nanotherapy molecules.

"We found that vascular normalization only increases the delivery of the smallest nanomedicines to cancer cells," says Vikash P. Chauhan, of the Steele Laboratory of Tumor Biology in the MGH Radiation Oncology Department, lead author of the report. "We also showed that the smallest nanomedicines are inherently better than larger nanomedicines at penetrating tumors, suggesting that smaller nanomedicines may be ideal for cancer therapy."

Tumors need to generate their own blood supply to continue growing, but vessels supplying tumors tend to be disorganized, oversized and leaky. Not only does this prevent the delivery of chemotherapy drugs to cells not close to tumor vessels, but the leakage of plasma out of blood vessels increases pressure within the tumor, further reducing the ability of drugs to penetrate tumors. Treatment with drugs that inhibit angiogenesis the process by which new vessels are generated reduces some of these abnormalities, a process called vascular normalization that has been shown to improve treatment of some cancers with standard chemotherapy drugs.

Nanomedicines are actually designed to exploit tumor vessel abnormality. While the molecules of standard chemotherapy drugs are about one nanometer a billionth of a meter nanomedicine molecules are from 10 to 100 times larger, too large to penetrate the pores of blood vessels in normal tissues but small enough to pass through the oversized pores of tumor vessels. Since the size of nanomedicines should keep them out of normal tissues, they are prescribed to reduce the negative side effects of chemotherapy.

The current study was designed to investigate whether the use of antiangiogenesis drugs to normalize tumor vasculature would improve or impede delivery of nanomedicines to tumor cells. In studies using a mouse model of breast cancer, the investigators first confirmed that treatment with DC101, an antibody to a molecule essential to blood vessel growth, temporarily decreased the diameter of enlarged tumor blood vessels. They then showed that this vascular normalization improved the penetration into tumors of 12-nanometer particles but not of 60- or 125-nanometer molecules.

A mathematical model prepared by the MGH team predicted that, while the abnormally large pores in the walls of tumor blood vessels lead to increased pressure within the tumor that impedes the entry of drugs, reducing pore size by antiangiogenesis treatment would relieve intratumor pressure, allowing the entry of those molecules that fit through the smaller pores. To test this prediction, they treated mice with implanted breast tumors either with DC101 and Doxil, a 100-nanometer version of the chemotherapy drug doxorubicin, or with DC101 and Abraxane, a 10-nanometer version of paclitaxel. Although treatment with both chemotherapeutics delayed tumor growth, vascular normalization with DC101 improved the effectiveness only of Abraxane and had no effect on Doxil treatment.

"A variety of anticancer nanomedicines are currently in use or in clinical trials," says Chauhan, who is a graduate student at the Harvard School of Engineering and Applied Sciences (SEAS). "Our findings suggest that combining smaller nanomedicines with antiangiogenic therapies may have a synergistic effect and that smaller nanomedicines should inherently penetrate tumors faster than larger nanomedicines, due to the physical principles that govern drug penetration. While it looks like future development of nanomedicines should focus on making them small around 12 nanometers in size we also need to investigate ways to improve delivery of the larger nanomedicines that are currently in use."

"Antiangiogenic agents are prescribed to a large number of cancer patients in combination with conventional therapeutics," explains Rakesh K. Jain, PhD, director of the Steele Lab and senior and corresponding author of the Nature Nanotechnology report. "Our study provides guidelines on how to combine the antiangiogenic drugs with nanotherapeutics." Jain is Cook Professor of Radiation Oncology (Tumor Biology) at Harvard Medical School.


'/>"/>
Contact: Sue McGreevey
smcgreevey@partners.org
617-724-2764
Massachusetts General Hospital
Source:Eurekalert

Related medicine news :

1. Novel Method Eyed for Normalizing Blood Sugar
2. Improved Stem Cell Line May Avoid Tumor Risk: Study
3. Oxygen in tumors predicts prostate cancer recurrence
4. 2 targeted therapies act against Ewings sarcoma tumors
5. Freezing Secondary Breast Cancer Tumors Shows Promise
6. Cancer treatment system sculpts radiation beam to match shape of a tumor
7. How cancer cells start new tumor sites
8. Rare medical phenomenon of systemic tumor disappearance following local radiation treatment reported in a patient with metastatic melanoma
9. Study shows advance in using patients own tumor-fighting cells to knock back advanced melanoma
10. A culprit behind brain tumor resistance to therapy
11. Vitamin D shrinks fibroid tumors in rats
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/27/2020)... LAUREL, N.J. (PRWEB) , ... May 27, 2020 ... ... contract manufacturer, announces that it is now manufacturing face shields to be ... novel coronavirus that causes COVID-19. These face shields are single use, made to ...
(Date:5/27/2020)... ... May 27, 2020 , ... ... of Washington Professor of Bioengineering, Founder & Editor of scientific journal WATER, ... ( https://www.amazon.com/Fourth-Phase-Water-Beyond-Liquid-ebook/dp/B00N2ASKF2 ) , https://www.voiceamerica.com/episode/123059/the-fourth-phase-of-water , * , During ...
(Date:5/26/2020)... ... , ... Today TRC Companies (“ TRC ”) announced the release of its ... owners and leaders assess whether their organizations are prepared to move forward as the ... intended to assist business leaders evaluate their readiness relative to CDC guidance and provides ...
(Date:5/25/2020)... ... ... Winemaker Grant Long Jr. is introducing three Toilet Paper Reserve wines. “These are ... complicated times,” he said, in announcing the new wines. The wines are 2019 Chardonnay ... Wine Blend are sourced in the Napa Valley; the Grenache comes from the El ...
(Date:5/21/2020)... Minn. (PRWEB) , ... May 21, 2020 , ... ... medical device manufacturer, announces its first milestone to deliver over one million FDA-compliant ... eight weeks. Summit Medical Face Shields meet the critical need for personal protective ...
Breaking Medicine News(10 mins):
(Date:5/21/2020)... ... May 21, 2020 , ... ... needs in the field of urology, today announced that Naveen Divakaruni, D.O., Advocate ... Excellence. The designation recognizes that Dr. Divakaruni has achieved a high level of ...
(Date:5/21/2020)... ... ... Labyrinthe Labs has announced the launch of its brand new and ground-breaking ... for fast-action relief of joint and muscle soreness, Lefa is botanically powered by a ... and muscles. , According to the National Institutes of Health , approximately ...
(Date:5/17/2020)... ... 2020 , ... The Sea Cucumber-derived triterpenoid glycoside Frondoside A, which has been ... the Sea Cucumber in a proprietary process to give SeaCare Dietary Supplement ... and time again: “You get what you pay for.” It is usually in reference ...
Breaking Medicine Technology: