Navigation Links
Yale scientists make 2 giant steps in advancement of quantum computing
Date:9/26/2007

New Haven, Conn. Two major steps toward putting quantum computers into real practice sending a photon signal on demand from a qubit onto wires and transmitting the signal to a second, distant qubit have been brought about by a team of scientists at Yale. The accomplishments are reported in sequential issues of Nature on September 20 and September 27, on which it is highlighted as the cover along with complementary work from a group at the National Institute of Standards and Technologies.

Over the past several years, the research team of Professors Robert Schoelkopf in applied physics and Steven Girvin in physics has explored the use of solid-state devices resembling microchips as the basic building blocks in the design of a quantum computer. Now, for the first time, they report that superconducting qubits, or artificial atoms, have been able to communicate information not only to their nearest neighbor, but also to a distant qubit on the chip.

This research now moves quantum computing from having information to communicating information. In the past information had only been transferred directly from qubit to qubit in a superconducting system. Schoelkopf and Girvins team has engineered a superconducting communication bus to store and transfer information between distant quantum bits, or qubits, on a chip. This work, according to Schoelkopf, is the first step to making the fundamentals of quantum computing useful.

The first breakthrough reported is the ability to produce on demand and control single, discrete microwave photons as the carriers of encoded quantum information. While microwave energy is used in cell phones and ovens, their sources do not produce just one photon. This new system creates a certainty of producing individual photons.

It is not very difficult to generate signals with one photon on average, but, it is quite difficult to generate exactly one photon each time. To encode quantum information on photons, you want there to be exactly one, according to postdoctoral associates Andrew Houck and David Schuster who are lead co-authors on the first paper.

We are reporting the first such source for producing discrete microwave photons, and the first source to generate and guide photons entirely within an electrical circuit, said Schoelkopf.

In order to successfully perform these experiments, the researchers had to control electrical signals corresponding to one single photon. In comparison, a cell phone emits about 1023 (100,000,000,000,000,000,000,000) photons per second. Further, the extremely low energy of microwave photons mandates the use of highly sensitive detectors and experiment temperatures just above absolute zero.

In this work we demonstrate only the first half of quantum communication on a chip quantum information efficiently transferred from a stationary quantum bit to a photon or flying qubit, says Schoelkopf. However, for on-chip quantum communication to become a reality, we need to be able to transfer information from the photon back to a qubit.

This is exactly what the researchers go on to report in the second breakthrough. Postdoctoral associate Johannes Majer and graduate student Jerry Chow, lead co-authors of the second paper, added a second qubit and used the photon to transfer a quantum state from one qubit to another. This was possible because the microwave photon could be guided on wires similarly to the way fiber optics can guide visible light and carried directly to the target qubit. A novel feature of this experiment is that the photon used is only virtual, said Majer and Chow, winking into existence for only the briefest instant before disappearing.

To allow the crucial communication between the many elements of a conventional computer, engineers wire them all together to form a data bus, which is a key element of any computing scheme. Together the new Yale research constitutes the first demonstration of a quantum bus for a solid-state electronic system. This approach can in principle be extended to multiple qubits, and to connecting the parts of a future, more complex quantum computer.

However, Schoelkopf likened the current stage of development of quantum computing to conventional computing in the 1950s, when individual transistors were first being built. Standard computer microprocessors are now made up of a billion transistors, but first it took decades for physicists and engineers to develop integrated circuits with transistors that could be mass produced.


'/>"/>

Contact: Janet Rettig Emanuel
janet.emanuel@yale.edu
203-432-2157
Yale University
Source:Eurekalert

Related biology technology :

1. UW computer scientists fighting computer virus "Cold War"
2. Scientists find way to make human collagen in lab
3. Wisconsin scientists to be recognized for innovative biofuel technology
4. UW-Madison scientists to mimic nature for newest cancer drugs
5. UW scientists study strange material with communications potential
6. Scientists find nanotech method for examining cells
7. UW space scientists use Keck telescope to study wild weather of Uranus
8. UW computer scientists tout achievements and explain industry shortcomings
9. Facing shortage of U.S. scientists, UW wants to boost math enrollment
10. UW-Madison scientists find a key to cell division
11. TIP/UW Scientists Provide Mars Rover Commentary
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/16/2017)... , Feb. 16, 2017  Rhythm, ... rare genetic deficiencies that result in life-threatening ... a $41 million mezzanine round of financing ... OrbiMed, MPM Capital, New Enterprise Associates, Pfizer ... undisclosed public healthcare investment fund. Rhythm will ...
(Date:2/15/2017)... Clara, CA (PRWEB) , ... February 15, 2017 , ... ... announced that Park SmartScan, a powerful AFM operating software that drastically boosts productivity with ... SmartScan completely automatizes all of the functions of setting up and taking the image ...
(Date:2/15/2017)... WARRINGTON, Pa. , Feb. 15, 2017 /PRNewswire/ ... ), a biotechnology company focused on developing aerosolized ... that it has completed a $10.5 million private ... expects that it has sufficient capital to fund ... 2b clinical trial data release in mid-2017. ...
(Date:2/15/2017)... , Feb. 15, 2017  Surrozen Inc., a ... drugs that promote the repair and regeneration of human ... led by The Column Group, a science-driven venture capital ... The funds will be used to implement a broad-based ... of Wnt signaling, which plays a central role in ...
Breaking Biology Technology:
(Date:2/8/2017)... YORK , Feb. 7, 2017 ... Driven largely by the confluence of organizations, desires ... distaste for knowledge-based systems (password and challenge questions), ... industrial, and government systems. The market is driven ... a demarcation between consumer and enterprise uses cases, ...
(Date:2/6/2017)... 2017 According to Acuity Market Intelligence, ... authorities to continue to embrace biometric and digital ... Automated Border Control (ABC) eGates and 1436 Automated ... than 163 ports of entry across the globe. ... a combined CAGR of 37%. APC Kiosks reached ...
(Date:2/2/2017)... -- Central to its deep commitment to honor the ... Prize Foundation today announced the laureates of the ... in their respective fields of Life Sciences and ... recognized with the 2017 Japan Prize for original ... the advancement of science and technology, but also ...
Breaking Biology News(10 mins):