Navigation Links
Yale scientists make 2 giant steps in advancement of quantum computing
Date:9/26/2007

New Haven, Conn. Two major steps toward putting quantum computers into real practice sending a photon signal on demand from a qubit onto wires and transmitting the signal to a second, distant qubit have been brought about by a team of scientists at Yale. The accomplishments are reported in sequential issues of Nature on September 20 and September 27, on which it is highlighted as the cover along with complementary work from a group at the National Institute of Standards and Technologies.

Over the past several years, the research team of Professors Robert Schoelkopf in applied physics and Steven Girvin in physics has explored the use of solid-state devices resembling microchips as the basic building blocks in the design of a quantum computer. Now, for the first time, they report that superconducting qubits, or artificial atoms, have been able to communicate information not only to their nearest neighbor, but also to a distant qubit on the chip.

This research now moves quantum computing from having information to communicating information. In the past information had only been transferred directly from qubit to qubit in a superconducting system. Schoelkopf and Girvins team has engineered a superconducting communication bus to store and transfer information between distant quantum bits, or qubits, on a chip. This work, according to Schoelkopf, is the first step to making the fundamentals of quantum computing useful.

The first breakthrough reported is the ability to produce on demand and control single, discrete microwave photons as the carriers of encoded quantum information. While microwave energy is used in cell phones and ovens, their sources do not produce just one photon. This new system creates a certainty of producing individual photons.

It is not very difficult to generate signals with one photon on average, but, it is quite difficult to generate exactly one photon each time. To encode quantum information on photons, you want there to be exactly one, according to postdoctoral associates Andrew Houck and David Schuster who are lead co-authors on the first paper.

We are reporting the first such source for producing discrete microwave photons, and the first source to generate and guide photons entirely within an electrical circuit, said Schoelkopf.

In order to successfully perform these experiments, the researchers had to control electrical signals corresponding to one single photon. In comparison, a cell phone emits about 1023 (100,000,000,000,000,000,000,000) photons per second. Further, the extremely low energy of microwave photons mandates the use of highly sensitive detectors and experiment temperatures just above absolute zero.

In this work we demonstrate only the first half of quantum communication on a chip quantum information efficiently transferred from a stationary quantum bit to a photon or flying qubit, says Schoelkopf. However, for on-chip quantum communication to become a reality, we need to be able to transfer information from the photon back to a qubit.

This is exactly what the researchers go on to report in the second breakthrough. Postdoctoral associate Johannes Majer and graduate student Jerry Chow, lead co-authors of the second paper, added a second qubit and used the photon to transfer a quantum state from one qubit to another. This was possible because the microwave photon could be guided on wires similarly to the way fiber optics can guide visible light and carried directly to the target qubit. A novel feature of this experiment is that the photon used is only virtual, said Majer and Chow, winking into existence for only the briefest instant before disappearing.

To allow the crucial communication between the many elements of a conventional computer, engineers wire them all together to form a data bus, which is a key element of any computing scheme. Together the new Yale research constitutes the first demonstration of a quantum bus for a solid-state electronic system. This approach can in principle be extended to multiple qubits, and to connecting the parts of a future, more complex quantum computer.

However, Schoelkopf likened the current stage of development of quantum computing to conventional computing in the 1950s, when individual transistors were first being built. Standard computer microprocessors are now made up of a billion transistors, but first it took decades for physicists and engineers to develop integrated circuits with transistors that could be mass produced.


'/>"/>

Contact: Janet Rettig Emanuel
janet.emanuel@yale.edu
203-432-2157
Yale University
Source:Eurekalert

Related biology technology :

1. UW computer scientists fighting computer virus "Cold War"
2. Scientists find way to make human collagen in lab
3. Wisconsin scientists to be recognized for innovative biofuel technology
4. UW-Madison scientists to mimic nature for newest cancer drugs
5. UW scientists study strange material with communications potential
6. Scientists find nanotech method for examining cells
7. UW space scientists use Keck telescope to study wild weather of Uranus
8. UW computer scientists tout achievements and explain industry shortcomings
9. Facing shortage of U.S. scientists, UW wants to boost math enrollment
10. UW-Madison scientists find a key to cell division
11. TIP/UW Scientists Provide Mars Rover Commentary
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... 27, 2016  Global demand for enzymes is ... 2020 to $7.2 billion.  This market includes enzymes ... products, biofuel production, animal feed, and other markets) ... biocatalysts). Food and beverages will remain the largest ... consumption of products containing enzymes in developing regions.  ...
(Date:6/27/2016)... ... June 27, 2016 , ... Newly ... technologies, services and solutions to the healthcare market. The company's primary focus is ... manufacturing, sales and marketing strategies that are necessary to help companies efficiently bring ...
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
Breaking Biology Technology:
(Date:6/3/2016)... 3, 2016 Das ... Nepal hat ein 44 ... geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, ... Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte ... Januar teilgenommen, aber Decatur wurde als konformste ...
(Date:6/2/2016)... Perimeter Surveillance & Detection Systems, ... Infrastructure, Support & Other Service  The latest ... comprehensive analysis of the global Border Security market ... of $17.98 billion in 2016. Now: In ... in software and hardware technologies for advanced video surveillance. ...
(Date:5/20/2016)... 2016  VoiceIt is excited to announce its ... By working together, VoiceIt and VoicePass will ... VoicePass take slightly different approaches to voice biometrics, ... and usability. ... partnership. "This marketing and technology partnership ...
Breaking Biology News(10 mins):