Navigation Links
UCSB researchers identify the mechanisms underlying salt-mediated behaviors in fruit flies
Date:6/14/2013

(Santa Barbara, Calif.) Next time you see a fruit fly in your kitchen, don't swat it. That fly could have a major impact on our progress in deciphering sensory biology and animal behavior, including someday providing a better understanding of the human brain.

UC Santa Barbara researchers in the Department of Molecular, Cellular, and Developmental Biology (MCDB) and the Neuroscience Research Institute (NRI) have been studying the mechanisms underlying salt taste coding of Drosophila (fruit flies). And they have made some rather remarkable discoveries. Their findings appear today in the journal Science.

The work done by Craig Montell, Duggan Professor of MCDB and Neuroscience, and his team not only explains the fundamental question of how an animal chooses low salt over high salt, but also unravels the mechanism for how gustatory receptor neurons (GRNs) are activated by salt, an essential nutrient for all animals, including humans.

The fact that animals are attracted to low-salt foods and reject food with high salt is well known. However, it remains unclear how low-salt and high-salt taste perceptions are differentially encoded in gustatory receptor cells, and how they induce distinct behavioral responses. The researchers' findings solve this mystery.

Fruit flies use two distinct types of salt GRNs to respond to different concentrations of salt. One type is activated maximally by low salt and induces attractive feeding behavior. The other class, activated primarily by high salt, leads to aversive feeding behavior. Montell and his colleagues found that these two types of neurons compete with each other to regulate the animal's behavioral outputs. The net outcome of the salt behavioral response is determined by the relative strength of salt-attractive GRNs and salt-aversive GRNs. The identification of the mechanism underlying the coding of salt taste in GRNs represents a conceptual breakthrough.

"Ultimately, what we want to understand is behavior, which depends on sensory input and an animal's genetic makeup," said Montell. "Once you have this information and the neuronal wiring, you can predict the behavior of a population of animals.

By focusing on behavior and perception in fruit flies, it may be just a few years before we have a rather impressive understanding about how sensory perceptions translate into behavior. That's why there's so much attention paid to model organisms like flies."

The paper also demonstrates that a member of the newly discovered ionotropic receptor (IR) family, IR76b, is required for low-salt sensation. Moreover, IR76b codes for a previously unrecognized class of GRNs separate from those that respond to sweet or bitter foods. Loss of IR76b selectively impaired the attractive low-salt pathway, causing low salt to become aversive to the mutant animals.

"The demonstration that IR76b is a Na+ leak channel suggests an unusual mechanism for activating a sensory neuron," said Montell. "We describe a mechanism for neuronal depolarization that is mediated by a change in the concentration of an extracellular ion (Na+), rather than activation of a receptor or ion channel by a specific agonist, leading to opening of a channel gate."

These findings provide compelling genetic evidence supporting the concept that the opposing behavioral responses to low and high salt are determined largely by competition between two newly identified types of salt-responsive GRNs.

"Not only does this comment on how salt perception may occur in many animals throughout the animal kingdom," Montell said, "but if we can fully understand how aversive and attractive sensory signals work in fruit flies, there may be future potential for controlling insect pests. Fruit flies provide a model for insects that spread disease, so one day we may be able to use thermosensory and chemosensory receptors to provide new strategies to control such pests."


'/>"/>

Contact: George Foulsham
george.foulsham@ia.ucsb.edu
805-893-3071
University of California - Santa Barbara
Source:Eurekalert

Related biology technology :

1. New England Biolabs Introduces Polbase, an Information Repository of Scientific Data for Polymerase Researchers
2. In new quantum-dot LED design, researchers turn troublesome molecules to their advantage
3. Multidisciplinary team of researchers develop world’s lightest material
4. Researchers shrink tumors and minimize side effects using tumor-homing peptide to deliver treatment
5. Innovative MetaMorph® NX Software Shatters Barriers Between Researchers and Image Analysis Goals with Exclusive Visual Workflow
6. UCLA researchers demonstrate fully printed carbon nanotube transistor circuits for displays
7. Penn and Brown researchers demonstrate earthquake friction effect at the nanoscale
8. Two Top Biological Imaging Centers Offer Powerful Free Online Tool to Researchers, Educators, and Public
9. Researchers develop one of the worlds smallest electronic circuits
10. MU researchers identify key plant immune response in fight against bacteria
11. Researchers realize high-power, narrowband terahertz source at room temperature
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/12/2017)... ... October 12, 2017 , ... DuPont Pioneer and ... they have entered into a multiyear collaboration to identify and characterize novel CRISPR-Cas ... tools for gene editing across all applications. , Under the terms of the ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
(Date:10/11/2017)... ... 2017 , ... ComplianceOnline’s Medical Device Summit is back for its 4th year. ... San Francisco, CA. The Summit brings together current and former FDA office bearers, regulators, ... government officials from around the world to address key issues in device compliance, quality ...
(Date:10/11/2017)... ... ... Disappearing forests and increased emissions are the main causes of the evolving air ... living in larger cities are affected by air pollution related diseases. , That is ... globally - decided to take action. , “I knew I had to take action ...
Breaking Biology Technology:
(Date:4/24/2017)... , April 24, 2017 ... and partner with  Identity Strategy Partners, LLP (IdSP) ... "With or without President Trump,s March 6, 2017 ... Terrorist Entry , refugee vetting can be instilled with ... resettlement. (Right now, all refugee applications are suspended ...
(Date:4/13/2017)... SANTA MONICA, Calif. , April 13, 2017 /PRNewswire/ ... New York will feature emerging and ... Innovation Summits. Both Innovation Summits will run alongside the ... variety of speaker sessions, panels and demonstrations focused on ... east coast,s largest advanced design and manufacturing event will ...
(Date:4/11/2017)... BROOKLYN, N.Y. , April 11, 2017 /PRNewswire-USNewswire/ ... identical fingerprints, but researchers at the New York ... University College of Engineering have found that partial ... fingerprint-based security systems used in mobile phones and ... previously thought. The vulnerability lies in ...
Breaking Biology News(10 mins):