Navigation Links
U-M physicists create first atomic-scale map of quantum dots

ANN ARBOR, Mich.---University of Michigan physicists have created the first atomic-scale maps of quantum dots, a major step toward the goal of producing "designer dots" that can be tailored for specific applications.

Quantum dots---often called artificial atoms or nanoparticles---are tiny semiconductor crystals with wide-ranging potential applications in computing, photovoltaic cells, light-emitting devices and other technologies. Each dot is a well-ordered cluster of atoms, 10 to 50 atoms in diameter.

Engineers are gaining the ability to manipulate the atoms in quantum dots to control their properties and behavior, through a process called directed assembly. But progress has been slowed, until now, by the lack of atomic-scale information about the structure and chemical makeup of quantum dots.

The new atomic-scale maps will help fill that knowledge gap, clearing the path to more rapid progress in the field of quantum-dot directed assembly, said Roy Clarke, U-M professor of physics and corresponding author of a paper on the topic published online Sept. 27 in the journal Nature Nanotechnology.

Lead author of the paper is Divine Kumah of the U-M's Applied Physics Program, who conducted the research for his doctoral dissertation.

"I liken it to exploration in the olden days," Clarke said of dot mapping. "You find a new continent and initially all you see is the vague outline of something through the mist. Then you land on it and go into the interior and really map it out, square inch by square inch.

"Researchers have been able to chart the outline of these quantum dots for quite a while. But this is the first time that anybody has been able to map them at the atomic level, to go in and see where the atoms are positioned, as well as their chemical composition. It's a very significant breakthrough."

To create the maps, Clarke's team illuminated the dots with a brilliant X-ray photon beam at Argonne National Laboratory's Advanced Photon Source. The beam acts like an X-ray microscope to reveal details about the quantum dot's structure. Because X-rays have very short wavelengths, they can be used to create super-high-resolution maps.

"We're measuring the position and the chemical makeup of individual pieces of a quantum dot at a resolution of one-hundredth of a nanometer," Clarke said. "So it's incredibly high resolution."

A nanometer is one-billionth of a meter.

The availability of atomic-scale maps will quicken progress in the field of directed assembly. That, in turn, will lead to new technologies based on quantum dots. The dots have already been used to make highly efficient lasers and sensors, and they might help make quantum computers a reality, Clarke said.

"Atomic-scale mapping provides information that is essential if you're going to have controlled fabrication of quantum dots," Clarke said. "To make dots with a specific set of characteristics or a certain behavior, you have to know where everything is, so that you can place the atoms optimally. Knowing what you've got is the most important thing of all."


Contact: Jim Erickson
University of Michigan

Related biology technology :

1. Physicists at UC Santa Barbara make discovery in quantum mechanics
2. NYU physicists find way to explore microscopic systems through holographic video
3. Nanophysicists find unexpected magnetic effect
4. Physicists discover important step for making light crystals
5. U of T physicists squeeze light to quantum limit
6. McGill physicists find a new state of matter in a transistor
7. Physicists tweak quantum force, reducing barrier to tiny devices
8. UBC physicists develop impossible technique to study and develop superconductors
9. Discovery by UC Riverside physicists could enable development of faster computers
10. New unifying theory of lasers advanced by physicists
11. Physicists saved from drowning in complexities of wetting theory
Post Your Comments:
Related Image:
U-M physicists create first atomic-scale map of quantum dots
(Date:12/1/2015)... ... December 01, 2015 , ... Park Systems , world ... scanning ion conductance microscopy module to Park NX10 that is the only product ... SICM benefits virtually all materials characterization that require measurements in liquid such as ...
(Date:12/1/2015)... Texas (PRWEB) , ... December ... ... , a leading relationship marketing company specializing in scientifically backed, age-defying products, ... January 2016 issue, which highlights the exponential success and unrivaled opportunities that ...
(Date:12/1/2015)... Calif. , Dec. 1, 2015 Cepheid ... of its participation at the Piper Jaffray Healthcare Conference ... this morning, the Company is reaffirming its outlook for ... for 2016, in addition to discussing longer term business ... and Chief Executive Officer.  "We continue to be the ...
(Date:12/1/2015)... ... December 01, 2015 , ... The American Society of Gynecologic ... Kyle Mathews will join fellow surgeons in the shared pursuit of “advancing ... experienced urogynecologist, founder of Plano Urogynecology Associates and Fellow of the American ...
Breaking Biology Technology:
(Date:11/10/2015)... YORK , Nov. 10, 2015 ... to behavioral biometrics that helps to identify and ... fraud. Signature is considered as the secure and ... the identification of a particular individual because each ... more accurate results especially when dynamic signature of ...
(Date:11/4/2015)... York , November 4, 2015 ... a new market report published by Transparency Market Research "Home ... Growth, Trends and Forecast 2015 - 2022", the global home ... US$ 30.3 bn by 2022. The market is estimated ... forecast period from 2015 to 2022. Rising security needs ...
(Date:10/29/2015)... JOLLA, Calif. , Oct. 29, 2015  The ... a new report titled, "DNA Synthesis and Biosecurity: Lessons ... well the Department of Health and Human Services guidance ... issued in 2010. --> ... but it also has the potential to pose unique ...
Breaking Biology News(10 mins):