Navigation Links
Technology brings new life to the study of diseases in old bones
Date:10/25/2012

A study led by The University of Manchester has demonstrated that new technology that can analyse millions of gene sequences in a matter of seconds is an effective way to quickly and accurately identify diseases in skeletons.

Professor Terry Brown, working in partnership with Professor Charlotte Roberts from Durham University, used a next generation sequencing approach, including hybridization capture technology, to identify tuberculosis genes in a 19th century female skeleton found in a crypt in Leeds.

Their study is part of wider research into the identification of strains of TB in skeletons dating from 100 AD to the late 19th century. It's hoped that understanding how the disease has evolved over time will help improve treatments and vaccines. TB rates have been increasing around the world, and it's estimated that one third of the world's population has latent TB. After HIV it kills more people than any other infectious disease.

Certain strains of TB affect the sufferer's bones, especially in the spine. The marks made by the disease remain evident on the bones long after the person's death. It's this evidence that Professor Roberts used to find suitable skeletons to screen for tuberculosis genes.

She sourced 500 skeletons from across Europe that showed evidence of TB dating from the Roman period to the 19th century. Bone samples from these skeletons were screened for TB DNA, and of those 100 were chosen for this particular study.

Professor Roberts explains: "So many skeletons were needed as it's very hard to tell if any DNA will have survived in the bones. You don't really know if there will be any present until you start screening and in the past that has been a lengthy process."

Professor Terry Brown then took on the search for TB DNA in the skeletons. Each small section of bone was ground up and placed in a solution. That was then put in a special machine which captured every gene sequence in the DNA. Millions of sequences were captured and sent to a computer.

Professor Brown and his team then searched for the gene sequences for tuberculosis. Because it is a bacterial disease the bacteria's DNA can remain in the bones after death.

Talking about the process Professor Brown said: "Previously we could only scan the bone sample for specific genes. We wouldn't see everything that was there which meant we could easily miss other genetic information that could be relevant. Using the hybridization screening meant we could search for different strains of TB, not just one."

About 280 bits of sequence in the DNA were found to match known tuberculosis genes. The data placed the historic strain of TB in a group that is uncommon today, but was known to have been present in North America in the 19th century. In fact it was found to be very similar to a strain recorded in a tuberculosis patient in New York in 1905.

Discussing the results Professor Brown says: "The fact that this particular strain of TB was found in both North America and in the skeleton from 19th century Yorkshire is not necessarily unusual. There were many migrants from Britain to America during the 19th century so it makes sense that TB strains were spread."

One of the downsides of hybridization capture identified by the researchers in this study was that it is possible to mistakenly identify DNA. Because it looks at all the sequences across the sample it may identify DNA that isn't from the bone, but actually from the surrounding soil or environment where the skeleton was buried.

In this study the results were checked using the more traditional method of polymerase chain reactions and were found to be accurate. The researchers concluded that using hybridization capture and next generation gene sequencing is an accurate and effective way to obtain detailed genotypes of ancient varieties of tuberculosis. It could potentially be used to study other diseases. Their findings have been published in the journal The Proceedings of the National Academy of Sciences.

Professor Roberts says: "We're really pleased with the results of this study and that the technology works. It will save a lot of time in the future. We now hope to publish more of the huge amounts of data we have acquired from the sequencing"

The scientists hope to compare their results with similar studies being done in America to assess what tuberculosis strains have been identified there. They're interested in studying which strains were brought to the country by migrants and what impact those had on the native strains of the disease.


'/>"/>
Contact: Morwenna Grills
Morwenna.Grills@manchester.ac.uk
44-161-275-2111
University of Manchester
Source:Eurekalert

Related biology technology :

1. New HIV prevention technology shows promise
2. Tel Aviv University to spearhead groundbreaking nanotechnology consortium
3. Germany Prioritizes Medical Biotechnology with New Initiatives
4. New Report: "Innovations in Drug Delivery - Broad-based Proprietary Technology Platforms to Address Delivery Efficiency and Improve Patient Compliance" Now Available at Twease.org
5. Islet Sciences Announces Exclusive License Agreement with Winthrop University Hospital to Commercialize a Beta Cell Loss Measurement Technology in Diabetes
6. Algae.Tec Biofuels Technology to Feature at 2012 ILA Berlin Airshow
7. Indian Pharma MNC Piramal Investing in German Molecular Imaging Technology
8. Biomass characterization technology research highlighted in Industrial Biotechnology journal
9. Breakthrough in nanotechnology
10. Bolder BioTechnology Announces Publication of Data Demonstrating Utility of the Companys Long-Acting IL-11 Analog to Prevent Renal Ischemia Reperfusion Injury
11. Bode Technology Offers First Rapid DNA Service Delivering a DNA Profile from Evidentiary Samples in Under 90 Minutes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/21/2017)... ... August 20, 2017 , ... Brian Pogue of Dartmouth ... January 2018. The journal is published by SPIE, the international society for optics ... of modern optical technology for improved health care and biomedical research. The journal ...
(Date:8/21/2017)... ... August 21, 2017 , ... Baltimore biotech firm, PathSensors, Inc., ... bring its proprietary CANARY pathogen detection technology and high throughput testing solutions to ... purchased an undisclosed number of PathSensors’ Zephyr pathogen detection instruments and will act ...
(Date:8/21/2017)... ... August 21, 2017 , ... Today Aether announced that Aether and University of ... Bill and Melinda Gates Foundation grant, to pursue a 3D bioprinting ... known as the Gates Foundation, is said to be the largest transparently operated private ...
(Date:8/17/2017)... ... August 17, 2017 , ... CNA Finance ... had provided a research update on Aytu Bioscience and cited promising increases in ... to Soulstring, prescription rates for Natesto® have more than doubled since March of ...
Breaking Biology Technology:
(Date:4/24/2017)... -- Janice Kephart , former 9/11 Commission ... LLP (IdSP) , today issues the following statement: ... 6, 2017 Executive Order: Protecting the Nation ... instilled with greater confidence, enabling the reactivation of ... are suspended by until at least July 2017). ...
(Date:4/18/2017)...  Socionext Inc., a global expert in SoC-based imaging and computing ... M820, which features the company,s hybrid codec technology. A demonstration utilizing ... Inc., will be showcased during the upcoming Medtec Japan at Tokyo ... Las Vegas Convention Center April 24-27. ... Click here for an image ...
(Date:4/13/2017)... SANTA MONICA, Calif. , April 13, 2017 /PRNewswire/ ... New York will feature emerging and ... Innovation Summits. Both Innovation Summits will run alongside the ... variety of speaker sessions, panels and demonstrations focused on ... east coast,s largest advanced design and manufacturing event will ...
Breaking Biology News(10 mins):