Navigation Links
Self-assembled nanowires could make chips smaller and faster

CHAMPAIGN, Ill. Researchers at the University of Illinois have found a new way to make transistors smaller and faster. The technique uses self-assembled, self-aligned, and defect-free nanowire channels made of gallium arsenide.

In a paper to appear in the IEEE (Institute of Electrical and Electronics Engineers) journal Electron Device Letters, U. of I. electrical and computer engineering professor Xiuling Li and graduate research assistant Seth Fortuna describe the first metal-semiconductor field-effect transistor fabricated with a self-assembled, planar gallium-arsenide nanowire channel.

Nanowires are attractive building blocks for both electronics and photonics applications. Compound semiconductor nanowires, such as gallium arsenide, are especially desirable because of their better transport properties and versatile heterojunctions. However, a number of challenges including integration with existing microelectronics must first be overcome.

"Our new planar growth process creates self-aligned, defect-free gallium-arsenide nanowires that could readily be scaled up for manufacturing purposes," said Li, who also is affiliated with the university's Micro and Nanoelectronics Laboratory and the Beckman Institute. "It's a non-lithographic process that can precisely control the nanowire dimension and orientation, yet is compatible with existing circuit design and fabrication technology."

The gallium-arsenide nanowire channel used in the researchers' demonstration transistor was grown by metal organic chemical vapor deposition using gold as a catalyst. The rest of the transistor was made with conventional microfabrication techniques.

While the diameter of the transistor's nanowire channel was approximately 200 nanometers, nanowires with diameters as small as 5 nanometers can be made with the gold-catalyzed growth technique, the researchers report. The self-aligned orientation of the nanowires is determined by the crystal structure of the substrate and certain growth parameters.

In earlier work, Li and Fortuna demonstrated they could grow the nanowires and then transfer-print them on other substrates, including silicon, for heterogeneous integration. "Transferring the self-aligned planar nanowires while maintaining both their position and alignment could enable flexible electronics and photonics at a true nanometer scale," the researchers wrote in the December 2008 issue of the journal Nano Letters.

In work presented in the current paper, the researchers grew the gallium-arsenide nanowire channel in place, instead of transferring it. In contrast to the common types of non-planar gallium arsenide nanowires, the researchers' planar nanowire was free from twin defects, which are rotational defects in the crystal structure that decrease the mobility of the charge carriers.

"By replacing the standard channel in a metal-semiconductor field-effect transistor with one of our planar nanowires, we demonstrated that the defect-free nanowire's electron mobility was indeed as high as the corresponding bulk value," Fortuna said. "The high electron mobility nanowire channel could lead to smaller, better and faster devices."

Considering their planar, self-aligned and transferable nature, the nanowire channels could help create higher performance transistors for next-generation integrated circuit applications, Li said.

The high quality planar nanowires can also be used in nano-injection lasers for use in optical communications.

The researchers are also developing new device concepts driven by further engineering of the planar one-dimensional nanostructure.


Contact: James E. Kloeppel
University of Illinois at Urbana-Champaign

Related biology technology :

1. Self-assembled materials form mini stem cell lab
2. Researchers peer into nanowires to measure dopant properties
3. Strong elasticity size effects in ZnO nanowires
4. Nanowires may boost solar cell efficiency, UC San Diego engineers say
5. Spiraling nanotrees offer new twist on growth of nanowires
6. Engineers make first active matrix display using nanowires
7. Carbon nanotubes outperform copper nanowires as interconnects
8. Chemists measure copper levels in zinc oxide nanowires
9. High Q NIST nanowires may be practical oscillators
10. Carbon nanotubes to be replaced by MoSIx nanowires in high-tech devices says new study
11. Putting the squeeze on an old material could lead to instant on electronic memory
Post Your Comments:
(Date:12/1/2015)... ... December 01, 2015 , ... Matthew “Tex” VerMilyea, PhD, HCLD, has joined ... will oversee all IVF lab procedures as well as continue his research efforts into ... 7,305 miles to Auckland, New Zealand to bring home a High Complexity Clinical Laboratory ...
(Date:11/30/2015)... ... , ... Global Stem Cells Group Chile CEO ... America and abroad for the first Iberoamerican Convention on Aesthetic Medicine, Cosmetology and ... will present and discuss new trends in anti-aging stem cell treatments, regenerative medicine ...
(Date:11/30/2015)... ... 2015 , ... Global Stem Cells Group today ... Santiago Marriott. The Global Stem Cells Group GMP facility is equipped with the ... medical researchers and practitioners, experienced in administering stem cell protocols using highly manipulated ...
(Date:11/30/2015)... , Dec. 1, 2015  An interventional radiology technique shows ... the preliminary results of a study being presented today at ... North America (RSNA). --> ... for decades by interventional radiologists as a way to stop ... procedure as a means of treating obesity is new. ...
Breaking Biology Technology:
(Date:11/30/2015)... , Nov. 30, 2015  BIOCLAIM announced ... finalist in this year,s Fierce Innovation Awards:  Healthcare Edition, ... FierceHealthIT , FierceHealthcare , ... as a finalist in the category of "Privacy ... --> --> ...
(Date:11/19/2015)...  Based on its in-depth analysis of the biometric ... the 2015 Global Frost & Sullivan Award for Product ... this award to the company that has developed the ... the market it serves. The award recognizes the extent ... customer base demands, the overall impact it has in ...
(Date:11/18/2015)... ALBANY, New York , November 18, 2015 /PRNewswire/ ... Transparency Market Research has published a new market report ... Share, Growth, Trends, and Forecast, 2015 - 2021. According to ... bn in 2014 and is anticipated to reach US$29.1 ... 2015 to 2021. North America ...
Breaking Biology News(10 mins):