Navigation Links
Scientists target bacterial transfer of resistance genes
Date:10/25/2012

CHAMPAIGN, Ill. The bacterium Streptococcus pneumoniae which can cause pneumonia, meningitis, bacteremia and sepsis likes to share its antibiotic-defeating weaponry with its neighbors. Individual cells can pass resistance genes to one another through a process called horizontal gene transfer, or by "transformation," the uptake of DNA from the environment.

Now researchers report that they can interrupt the cascade of cellular events that allows S. pneumoniae to swap or suck up DNA. The new findings, reported in the journal PLoS ONE, advance the effort to develop a reliable method for shutting down the spread of drug resistance in bacteria.

"Within the last few decades, S. pneumoniae has developed resistance to several classes of antibiotics," said University of Illinois pathobiology professor Gee Lau, who led the study. "Importantly, it has been shown that antibiotic stress the use of antibiotics to treat an infection can actually induce the transfer of resistance genes among S. pneumoniae. Our approach inhibits resistance gene transfer in all strains of S. pneumoniae, and does so without increasing selective pressure and without increasing the likelihood that resistant strains will become dominant."

Lau and his colleagues focused on blocking a protein that, when it binds to a receptor in the bacterial cell membrane, spurs a series of events in the cell that makes the bacterium "competent" to receive new genetic material. The researchers hypothesized that interfering with this protein (called CSP) would hinder its ability to promote gene transfer.

In previous work published late last year in the journal PLoS Pathogens, Lau's team identified proteins that could be made in the lab that were structurally very similar to the CSP proteins. These artificial CSPs can dock with the membrane receptors, block the bacterial CSPs' access to the receptors and reduce bacterial competence, as well as reducing the infectious capacity of S. pneumoniae.

In the new study, the researchers fine-tuned the amino acid structure of more than a dozen artificial CSPs and tested how well they inhibited the S. pneumoniae CSPs. They also tested their ability (or, more desirably, their inability) to mimic the activity of CSPs in bacterial cells.

"The chemical properties of individual amino acids in a protein can greatly influence the protein's activity," Lau said.

The team identified several artificial CSPs that both inhibited the bacterial CSPs and reduced S. pneumoniae competence by more than 90 percent.

"This strategy will likely help us reduce the spread of antibiotic-resistance genes among S. pneumoniae and perhaps other species of streptococcus bacteria," Lau said.


'/>"/>
Contact: Diana Yates
diya@illinois.edu
217-333-5802
University of Illinois at Urbana-Champaign
Source:Eurekalert  

Related biology technology :

1. Scientists defuse the Vietnam time bomb
2. Singapore scientists lead human embryonic stem cell study
3. Sheffield scientists shine a light on the detection of bacterial infection
4. Nanowiggles: Scientists discover graphene nanomaterials with tunable functionality in electronics
5. Scientists solve mystery of colorful armchair nanotubes
6. iBioSeminars and iBioMagazine: Free, Online Biology Seminars and Short Talks by Leading Scientists
7. Chinese Scientists Zhen-Yi Wang and Zhu Chen Awarded 7th Annual Szent-Gyorgyi Prize for Progress in Cancer Research
8. Scientists decode brain waves to eavesdrop on what we hear
9. Receptos Scientists Publish Determination of a High Resolution Sphingosine 1-Phosphate Receptor 1 Structure in Science
10. Scientists learn how to out run damage with imaging technique
11. Design eye for the science guy: Drop-in clinic helps scientists communicate data
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Scientists target bacterial transfer of resistance genes
(Date:2/11/2016)... ... February 11, 2016 , ... ... delivering cutting-edge information focused on the development and manufacture of biopharmaceuticals and ... premier sponsor of the 2016 BioProcess International Awards – Recognizing Excellence in ...
(Date:2/11/2016)... ... February 11, 2016 , ... Global ... new agreement with Bankok,Thailand-based Global Stem Cells Network (GSCN) to distribute exosome injection ... American countries, including Mexico, Costa Rica, Dominican Republic, Colombia, Argentina, Nicaragua, Panama, El ...
(Date:2/10/2016)... , Feb. 10, 2016 NX Prenatal Inc., ... proprietary NeXosome® technology for early warning of adverse ... most recent study by Dr. Thomas McElrath ... Society for Maternal Fetal Medicine,s (SMFM) annual meeting held ... th , 2016.  The presentation reported initial positive ...
(Date:2/10/2016)... , Feb. 10, 2016  Matchbook, Inc., a ... fast growing biotech companies, announced today the appointment ... Strategic Advisor. Jim brings nearly 25 years of ... procurement, having spent nearly two decades in executive ... and Procurement at Genzyme and, most recently headed ...
Breaking Biology Technology:
(Date:2/2/2016)... YORK , Feb. 2, 2016 Technology Enhancements ... presents an analysis of the digital and computed radiography ... Malaysia , and Indonesia ... trends and market size, as well as regional market ... country and discusses market penetration and market attractiveness, both ...
(Date:2/1/2016)... 2016 Rising sales of consumer ... touchfree intuitive gesture control market size ... of consumer electronics coupled with new technological advancements to ... size through 2020   --> ... technological advancements to drive global touchfree intuitive gesture control ...
(Date:1/28/2016)... 28, 2016 Synaptics (NASDAQ: SYNA ), a leading ... second quarter ended December 31, 2015. --> ... fiscal 2016 increased 2 percent compared to the comparable quarter last ... fiscal 2016 was $35.0 million, or $0.93 per diluted share. ... for the first quarter of fiscal 2016 grew 9 percent over ...
Breaking Biology News(10 mins):