Navigation Links
Scientists learn how to 'out run damage' with imaging technique
Date:2/21/2012

VANCOUVER, CANADA - Over the decades X-ray crystallography has been fundamental in the development of many scientific fields. The method has revealed the structure and function of many biological molecules, including vitamins, drugs, proteins and nucleic acids such as DNA. However, in order to obtain good data, large single crystals are required. These are often nearly impossible to grow. There also is the problem that X-rays damage delicate biological samples.

"From the beginning, the resolution of images recorded by biologists has been limited by damage due to the radiation used," said physicist John C. H. Spence, a Regents' Professor in physics at Arizona State University. "But what happens if a pulse of imaging radiation is used that terminates before damage begins, yet contains sufficient photons to generate a useful scattering pattern?"

Indeed, results of such a method are being reported by Spence at the American Association for the Advancement of Science annual meeting in Vancouver, Canada. Spence presented his findings today (Feb. 17) during a special session on "Imaging and Controlling Molecular Dynamics with Ultrashort Laser Pulses."

Many in the scientific community didn't believe such a method could work. Yet, said Spence "The experiments of Henry Chapman's (University of California, Davis) group using lithographed structures and soft (i.e. long wavelength) X-rays had shown that if we could 'out-run the damage,' this might indeed be a useful path to damage-free imaging at atomic resolution. In my lab we were thinking about the data analysis, and building the hydrated protein-beam injector device, a bit like an ink-jet printer, to spray the molecules across an X-ray laser. This snap-shot method should eventually allow us to make movies of molecular machines at work."

Spence joined forces with Chapman and many collaborators to recently demonstrate serial snapshot femtosecond (10-15 of a second) diffraction (SFX) from nanocrystals using the world's first hard X-ray laser. The photosystem I (PSI) nanocrystals came from Professor Petra Fromme's lab in ASU's Department of Chemistry and Biochemistry.

"These are early days for femtosecond diffractive imaging," noted Spence, who provided the theory and much of the data analysis. "But first indications are that high-resolution data can now be obtained at the nanoscale by this method. If we can indeed 'outrun' the many radiation-damage processes in this way, it will open the way to future experiments on laser-excited samples, 3-D image reconstruction and a host of other experiments on fast imaging, all directed to the grand challenge of obtaining movies showing molecules at work."


'/>"/>
Contact: jenny green
jenny.green@asu.edu
480-965-1430
Arizona State University
Source:Eurekalert

Related biology technology :

1. Clemson scientists put a (nano) spring in their step
2. City of Hope Helps KGI Launch New Management Training Program for Scientists
3. University of Pennsylvania scientists move optical computing closer to reality
4. Scientists grow nanonets able to snare added energy transfer
5. The National Cancer Institute Joins the Global Community of Scientists Now Using BIOMARKERcenter From Thomson Reuters
6. Scientists peel away the mystery behind golds catalytic prowess
7. SACHEM Launches 2-D HPLC e-Learning Program : New e-Learning Program Teaches Scientists How to Better Analyze and Prove Product Purity Through Greater Sensitivity and Precision in Identification of Trace Components
8. Vermillion and Stanford Scientists Receive Best Research Award From the PAD Coalition
9. Brewing better beer: Scientists determine the genomic origins of lager yeasts
10. Tengion Scientists Publish Positive Preclinical Findings With Neo-Organ Demonstrating Long-term Durability and Growth With Skeletal Maturation
11. CU scientists create worlds thinnest balloon -- just one atom thick
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/5/2016)... CA (PRWEB) , ... May 05, 2016 , ... ... closed on a definitive agreement to acquire Algynomics, a research-stage pain diagnostics company. ... data to identify individuals at increased risk for the development of chronic pain, ...
(Date:5/5/2016)... ... 2016 , ... American Process, Inc. (API) announced that the ... 9,322,133 and 9,322,134, to API and its affiliated companies for BioPlus® nanocellulose technology. ... compositions. In addition to these patents and U.S. Patent No. 9,187,865 awarded ...
(Date:5/5/2016)... 2016  Why are two uber-successful former agency presidents ... launching a new venture—yet going about things in ... truly helping clients raise the value of their offerings ... different type of collaboration. The result is ... and medical device sectors. Elevate specializes in shaping and ...
(Date:5/5/2016)... ... May 05, 2016 , ... ProMIS Neurosciences ... its first three targets, it has identified a fourth in a series of ... the development and progression of Alzheimer’s disease (AD). , “This discovery ...
Breaking Biology Technology:
(Date:5/3/2016)...  Neurotechnology, a provider of high-precision biometric identification ... Identification System (ABIS) , a complete system for ... can process multiple complex biometric transactions with high ... face or iris biometrics. It leverages the core ... MegaMatcher Accelerator , which have been used in ...
(Date:4/28/2016)... India , April 28, 2016 ... Infosys (NYSE: INFY ), and Samsung SDS, a ... that will provide end customers with a more secure, ... services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) , ... services, but it also plays a fundamental part in enabling ...
(Date:4/28/2016)... April 28, 2016 First quarter 2016:   ... 966% compared with the first quarter of 2015 The ... 589.1 M (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) ... guidance is unchanged, SEK 7,000-8,500 M. The operating margin ...
Breaking Biology News(10 mins):