Navigation Links
Routes towards defect-free graphene
Date:2/1/2013

A new way of growing graphene without the defects that weaken it and prevent electrons from flowing freely within it could open the way to large-scale manufacturing of graphene-based devices with applications in fields such as electronics, energy, and healthcare.

A team led by Oxford University scientists has overcome a key problem of growing graphene a one atom-thick layer of carbon when using an established technique called chemical vapour deposition, that the tiny flakes of graphene form with random orientations, leaving defects or 'seams' between flakes that grow together.

The discovery, reported in a paper to be published in ACS Nano, reveals how these graphene flakes, known as 'domains', can be lined up by manipulating the alignment of carbon atoms on a relatively cheap copper foil the atomic structure of the copper surface acts as a 'guide' that controls the orientation of the carbon atoms growing on top of them.

A combination of control of this copper guide and the pressure applied during growth makes it possible to control the thickness of these domains, the geometry of their edges and the grain boundaries where they meet 'seams' that act as obstacles to the smooth progress of electrons necessary to create efficient graphene-based electrical and electronic devices.

'Current methods of growing flakes of graphene often suffer from graphene domains not lining up,' said Professor Nicole Grobert of Oxford University's Department of Materials who led the work. 'Our discovery shows that it is possible to produce large sheets of graphene where these flakes, called 'domains', are well-aligned, which will create a neater, stronger, and more 'electron-friendly' material.'

In principle the size of the sheet of graphene that can be created is only limited by the size of the copper base sheet.

The Oxford-led team, which includes researchers from Forschungszentrum Juelich Germany, the University of Ioannina Greece, and Renishaw plc, has shown that it is also possible using the new technique to selectively grow bilayer domains of graphene a double layer of closely packed carbon atoms which are of particular interest for their unusual electrical properties.

'People have used copper as a base material before, but this is the first time anyone has shown that the many different types of copper surfaces can indeed strongly control the structure of graphene,' said Professor Grobert. 'It's an important step towards finding a way of manufacturing graphene in a controlled fashion at an industrial scale, something that is essential if we are to bridge the gap between fundamental research and building useful graphene-based technologies.'


'/>"/>
Contact: University of Oxford Press Office
press.office@admin.ox.ac.uk
44-018-652-83877
University of Oxford
Source:Eurekalert

Related biology technology :

1. Terminator-style info-vision takes step towards reality
2. Draper Device Could Help Pave Way Towards “Kidney-On-A-Chip” Development
3. Positron Accepts Economic Incentives Offer From The City Of Gary, Indiana For $30 Million Towards 70 MeV Cyclotron Project
4. Arecor Awarded Biomedical Catalyst Funding Towards £1.3 Million Project
5. Researching graphene nanoelectronics for a post-silicon world
6. UCSB professor receives award for graphene electronics research
7. Graphene foam detects explosives, emissions better than todays gas sensors
8. Imperfections may improve graphene sensors
9. Graphene earns its stripes
10. Functionalized graphene oxide plays part in next-generation oil-well drilling fluids
11. Imperfections may improve graphene sensors
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/17/2017)... ... 17, 2017 , ... Academy of Model Aeronautics (AMA), the ... of unmanned aircraft systems (UAS), are launching a joint program to promote safe ... support educational outreach efforts. , AMA and DJI will collaborate on other potential ...
(Date:2/16/2017)... MENLO PARK, Calif. and ... -- Longitude Capital, a private investment firm focused on ... today announced the promotion of Josh Richardson ... Richardson focuses on investments in biotechnology companies.  He ... and has played important roles in Longitude,s investments ...
(Date:2/16/2017)... 2017   Biostage, Inc. (Nasdaq: ... developing bioengineered organ implants to treat cancers and other ... today the closing on February 15, 2017 of its ... stock and warrants to purchase 20,000,000 shares of common ... offering was priced at $0.40 per share of common ...
(Date:2/16/2017)... Malden, MA (PRWEB) , ... February 16, 2017 ... ... viscoelastic 4-level cervical case. Dr. Kingsley Chin, professor and Harvard trained surgeon, completed ... The procedure was performed on a 55-year-old practicing female physician suffering from degenerative ...
Breaking Biology Technology:
(Date:2/8/2017)... AWRE ), a leading supplier of biometrics software ... year ended December 31, 2016. Revenue for ... $6.9 million in the same quarter last year. Operating income ... to $2.6 million in the fourth quarter of 2015. Net ... or $0.02 per diluted share, which compares to $1.8 million, ...
(Date:2/7/2017)... -- Zimmer Biomet Holdings, Inc. (NYSE and SIX: ZBH), ... the LEERINK Partners 6th Annual Global Healthcare Conference at ... 15, 2017 at 10 a.m. Eastern Time. ... accessed at http://wsw.com/webcast/leerink28/zbh .  The webcast will be ... Investor Relations website at http://investor.zimmerbiomet.com . ...
(Date:2/2/2017)... , Feb. 2, 2017   TapImmune, Inc. ... immuno-oncology company specializing in the development of innovative ... treatment of cancer and metastatic disease, announced today ... GMP manufacturing of a second clinical lot of ... folate receptor alpha. The manufactured vaccine product will ...
Breaking Biology News(10 mins):