Navigation Links
Purdue researcher invents molecule that stops SARS
Date:12/23/2008

WEST LAFAYETTE, Ind. - A Purdue University researcher has created a compound that prevents replication of the virus that causes SARS and could lead to a treatment for the disease.

"The outbreak of SARS in 2003 led to hundreds of deaths and thousands of illnesses, and there is currently no treatment," said Arun Ghosh, the Purdue professor that led the molecular design team. "Although it is not currently a threat, there is the concern that SARS could return or be used as a biological weapon. It is important to develop a treatment as a safeguard."

According to the Centers for Disease Control and Prevention, the virus can be transmitted through coughing or sneezing, and the infection can quickly spread from person to person. SARS, or Severe Acute Respiratory Syndrome, spread through two dozen countries over a period of a few months before it was contained. A total of 8,098 people worldwide became ill and 774 died.

In addition to its ability to block the SARS virus, the molecular compound that inhibits the virus provides new insights into a group of proteins found in a range of diseases including childhood croup, herpes and cancer, Ghosh said.

"The molecular inhibitor we developed is very potent against the SARS virus by binding to and blocking the use of a specific protein, called papain-like protease, or PLpro, involved in viral replication and evasion of the immune system," said Ghosh who has a joint appointment in chemistry and medicinal chemistry and molecular pharmacology. "This is the first design and discovery of an inhibitor for this class of proteins. We are hopeful that this will open the door to new treatments for other diseases as well."

Ghosh's group teamed with a research group led by Andrew Mesecar at the University of Illinois at Chicago. The National Institutes of Health infectious disease biodefense program selected the team and funded the research that has been published in the online version of the journal Proceedings of the National Academy of Sciences.

Mesecar's team screened more than 50,000 chemical compounds for the necessary properties to both block the virus and have the potential to become viable drug treatments.

"Only two of the compounds we tested were identified as having the properties researchers believed could become drugs," said Mesecar, a professor of medicinal chemistry and pharmacognosy. "Using those two compounds, Arun Ghosh and his team increased the potency by almost two orders of magnitude."

Ghosh, who invented the HIV drug darunavir that entered the market in 2007, specializes in improving the treatment properties of molecular inhibitors through structure-based design.

"The design of this inhibitor was a challenge because we did not know the structure of the compound, which shows us how an inhibitor works and what parts need to be amplified or changed," Ghosh said.

Kiira Ratia, a graduate student at the University of Illinois, provided a breakthrough when she captured the X-ray structure of the inhibitor molecule bound to the protein. The structure confirmed that the inhibitor would be a good candidate for drug development because it showed that the inhibitor did not bond too strongly to the protein, Ghosh said.

"This was the first time the structure was revealed and we could see that the inhibitor filled the active site of the protein without using strong covalent bonds," he said. "This is very important for development of a therapeutic treatment because it means there is less of a chance for adverse side effects or toxicity, and the treatment can be easily reversed."

Often a protein involved in the disease process also plays a role in regular human biological processes. A safe and effective treatment needs to block enough of the protein to cripple the disease while not completely eliminating the protein from a person's system. It also must work through interactions that are easily reversed by ending treatment, he said.

The inhibitor has only been tested in the laboratory. It must be developed into a drug treatment and evaluated by the U.S. Food and Drug Administration before it could be used by patients, Ghosh said.

In addition to Ghosh and Mesecar, co-authors of the paper detailing this work include, Ratia, Scott Pegan, Wentao Fu, Michael E. Johnson, Melissa Coughlin and Bellur S. Prabhakar from the University of Illinois; Jun Takayama from Purdue University; and Katrina Sleeman and Srendranath Baliji from Loyola University Chicago Stritch School of Medicine.

The team is evaluating the potential to design similar inhibitors for cancer and continues to work with the SARS inhibitor to create even more effective compounds.


'/>"/>

Contact: Elizabeth K. Gardner
ekgardner@purdue.edu
765-494-2081
Purdue University
Source:Eurekalert

Related biology technology :

1. Purdue Pharma L.P. Announces Resolution of OxyContin(R) Patent Lawsuit with Mallinckrodt Inc.
2. Purdue leads center to simulate behavior of micro-electromechanical systems
3. Purdue creating wireless sensors to monitor bearings in jet engines
4. Duke researchers coax bright white light from unexpected source
5. Pitt researchers create nontoxic clean-up method for potentially toxic nano materials
6. USC researchers print dense lattice of transparent nanotube transistors on flexible base
7. New Online Video Features Brazilian Researcher Elbio Rech
8. J. Craig Venter Institute Researchers Publish Significant Advance in Genome Assembly Technology
9. Virginia Tech researchers discover how mosquitoes avoid succumbing to viruses they transmit
10. Alfred Mann Foundation for Biomedical Engineering Launches New Web Site Designed to Help University Researchers Bring Biomedical Advances to Market
11. Self-powered devices possible, says Texas A&M researcher
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is pleased ... received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of ... Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform ...
(Date:6/23/2016)... , June 23, 2016   EpiBiome , ... secured $1 million in debt financing from Silicon Valley ... up automation and to advance its drug development efforts, ... new facility. "SVB has been an incredible ... the services a traditional bank would provide," said Dr. ...
(Date:6/23/2016)... ... , ... In a new case report published today in STEM CELLS Translational ... lymphedema after being treated for breast cancer benefitted from an injection of stem cells ... this debilitating, frequent side effect of cancer treatment. , Lymphedema refers to ...
Breaking Biology Technology:
(Date:3/29/2016)... RATON, Florida , March 29, 2016 ... or the "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are ... DNA in ink used in a variety of writing ... theft. Buyers of originally created collectibles from athletes on ... through forensic analysis of the DNA. ...
(Date:3/22/2016)... March 22, 2016 ... Sensors Market for Consumer Industry by Type (Image, ... Application (Communication & IT, Entertainment, Home Appliances, ... Forecast to 2022", published by MarketsandMarkets, the ... to reach USD 26.76 Billion by 2022, ...
(Date:3/21/2016)... 22, 2016 Unique technology ... for superior security   Xura, ... of secure digital communications services, today announced it is ... offer enterprise customers, particularly those in the Financial Services ... voice authentication within a mobile app, alongside, and in ...
Breaking Biology News(10 mins):