Navigation Links
New material harvests energy from water vapor
Date:1/10/2013

CAMBRIDGE, MA -- MIT engineers have created a new polymer film that can generate electricity by drawing on a ubiquitous source: water vapor.

The new material changes its shape after absorbing tiny amounts of evaporated water, allowing it to repeatedly curl up and down. Harnessing this continuous motion could drive robotic limbs or generate enough electricity to power micro- and nanoelectronic devices, such as environmental sensors.

"With a sensor powered by a battery, you have to replace it periodically. If you have this device, you can harvest energy from the environment so you don't have to replace it very often," says Mingming Ma, a postdoc at MIT's David H. Koch Institute for Integrative Cancer Research and lead author of a paper describing the new material in the Jan. 11 issue of Science.

"We are very excited about this new material, and we expect as we achieve higher efficiency in converting mechanical energy into electricity, this material will find even broader applications," says Robert Langer, the David H. Koch Institute Professor at MIT and senior author of the paper. Those potential applications include large-scale, water-vapor-powered generators, or smaller generators to power wearable electronics.

Other authors of the Science paper are Koch Institute postdoc Liang Guo and Daniel Anderson, the Samuel A. Goldblith Associate Professor of Chemical Engineering and a member of the Koch Institute and MIT's Institute for Medical Engineering and Science.

Harvesting energy

The new film is made from an interlocking network of two different polymers. One of the polymers, polypyrrole, forms a hard but flexible matrix that provides structural support. The other polymer, polyol-borate, is a soft gel that swells when it absorbs water.

Previous efforts to make water-responsive films have used only polypyrrole, which shows a much weaker response on its own. "By incorporating the two different kinds of polymers, you can generate a much bigger displacement, as well as a stronger force," Guo says.

The film harvests energy found in the water gradient between dry and water-rich environments. When the 20-micrometer-thick film lies on a surface that contains even a small amount of moisture, the bottom layer absorbs evaporated water, forcing the film to curl away from the surface. Once the bottom of the film is exposed to air, it quickly releases the moisture, somersaults forward, and starts to curl up again. As this cycle is repeated, the continuous motion converts the chemical energy of the water gradient into mechanical energy.

Such films could act as either actuators (a type of motor) or generators. As an actuator, the material can be surprisingly powerful: The researchers demonstrated that a 25-milligram film can lift a load of glass slides 380 times its own weight, or transport a load of silver wires 10 times its own weight, by working as a potent water-powered "mini tractor." Using only water as an energy source, this film could replace the electricity-powered actuators now used to control small robotic limbs.

"It doesn't need a lot of water," Ma says. "A very small amount of moisture would be enough."

Generating electricity

The mechanical energy generated by the material can also be converted into electricity by coupling the polymer film with a piezoelectric material, which converts mechanical stress to an electric charge. This system can generate an average power of 5.6 nanowatts, which can be stored in capacitors to power ultra-low-power microelectronic devices, such as temperature and humidity sensors.

If used to generate electricity on a larger scale, the film could harvest energy from the environment for example, while placed above a lake or river. Or, it could be attached to clothing, where the mere evaporation of sweat could fuel devices such as physiological monitoring sensors. "You could be running or exercising and generating power," Guo says.

On a smaller scale, the film could power microelectricalmechanical systems (MEMS), including environmental sensors, or even smaller devices, such as nanoelectronics. The researchers are now working to improve the efficiency of the conversion of mechanical energy to electrical energy, which could allow smaller films to power larger devices.


'/>"/>

Contact: Sarah McDonnell
s_mcd@mit.edu
617-253-8923
Massachusetts Institute of Technology
Source:Eurekalert

Related biology technology :

1. NASA develops super-black material that absorbs light across multiple wavelength bands
2. New metamaterial allows transmission gain while retaining negative refraction property
3. Multidisciplinary team of researchers develop world’s lightest material
4. Microfabrication breakthrough could set piezoelectric material applications in motion
5. Transparent material breakthrough
6. BioRestorative Therapies Signs Material Manufacturing Agreement With University of Utah
7. Nanowiggles: Scientists discover graphene nanomaterials with tunable functionality in electronics
8. New material for thermonuclear fusion reactors
9. Nature Materials: Quick-cooking nanomaterials in microwave to make tomorrows air conditioners
10. Berkeley Lab seeks to help US assert scientific leadership in critical materials
11. Nature Materials study: Graphene invisible to water
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/20/2017)... , ... April 20, 2017 , ... ... , this new webinar will explore challenging patient cases when screening for direct ... hospital, there may be a need for bridging parental anticoagulation especially for those ...
(Date:4/20/2017)... , ... April 20, 2017 , ... NetDimensions appoints Bill ... , With over 20 years of experience in the learning technologies industry, Mastin joins ... company within Learning Technologies Group plc (LTG). At LEO, Mastin served as SVP of ...
(Date:4/20/2017)... 20, 2017 Dutch philosopher Koert van Mensvoort - ... the University of Technology in Eindhoven - has written a ,Letter to ... calls on humanity to avoid becoming a slave and victim to its own ... ... Dutch philosopher Koert van Mensvoort – founder of the Next Nature Network ...
(Date:4/19/2017)... (PRWEB) , ... April 18, 2017 , ... Alisa Wright, ... Distinguished Alumni Awards from the Purdue College of Pharmacy in Lafayette, Indiana. , ... Pharmacy Program for achievements in their careers and other scientific endeavors. , Wright ...
Breaking Biology Technology:
(Date:4/11/2017)... DUBLIN , Apr. 11, 2017 Research ... Tracking Market 2017-2021" report to their offering. ... The global eye tracking market to grow at ... The report, Global Eye Tracking Market 2017-2021, has been prepared based ... report covers the market landscape and its growth prospects over the ...
(Date:4/5/2017)... April 5, 2017 Today HYPR Corp. ... the server component of the HYPR platform is officially ... the end-to-end security architecture that empowers biometric authentication across ... has already secured over 15 million users across the ... of connected home product suites and physical access represent ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):