Navigation Links
New '4-D' transistor is preview of future computers
Date:12/5/2012

WEST LAFAYETTE, Ind. A new type of transistor shaped like a Christmas tree has arrived just in time for the holidays, but the prototype won't be nestled under the tree along with the other gifts.

"It's a preview of things to come in the semiconductor industry," said Peide "Peter" Ye, a professor of electrical and computer engineering at Purdue University. Researchers from Purdue and Harvard universities created the transistor, which is made from a material that could replace silicon within a decade. Each transistor contains three tiny nanowires made not of silicon, like conventional transistors, but from a material called indium-gallium-arsenide. The three nanowires are progressively smaller, yielding a tapered cross section resembling a Christmas tree.

The research builds on previous work in which the team created a 3-D structure instead of conventional flat transistors. The approach could enable engineers to build faster, more compact and efficient integrated circuits and lighter laptops that generate less heat than today's. New findings show how to improve the device performance by linking the transistors vertically in parallel.

"A one-story house can hold so many people, but more floors, more people, and it's the same thing with transistors," Ye said. "Stacking them results in more current and much faster operation for high-speed computing. This adds a whole new dimension, so I call them 4-D."

Findings will be detailed in two papers to be presented during the International Electron Devices Meeting on Dec. 8-12 in San Francisco. One of the papers has been highlighted by conference organizers as among "the most newsworthy topics and papers to be presented."

The work is led by Purdue doctoral student Jiangjiang Gu and Harvard postdoctoral researcher Xinwei Wang.

The newest generation of silicon computer chips, introduced this year, contain transistors having a vertical 3-D structure instead of a conventional flat design. However, because silicon has a limited "electron mobility" - how fast electrons flow - other materials will likely be needed soon to continue advancing transistors with this 3-D approach, Ye said.

Indium-gallium-arsenide is among several promising semiconductors being studied to replace silicon. Such semiconductors are called III-V materials because they combine elements from the third and fifth groups of the periodic table.

The authors of the research papers are Gu; Wang; Purdue doctoral student H. Wu; Purdue postdoctoral research associate J. Shao; Purdue doctoral student A. T. Neal; Michael J. Manfra, Purdue's William F. and Patty J. Miller Associate Professor of Physics; Roy Gordon, Harvard's Thomas D. Cabot Professor of Chemistry; and Ye.

Transistors contain critical components called gates, which enable the devices to switch on and off and to direct the flow of electrical current. Smaller gates make faster operation possible. In today's 3-D silicon transistors, the length of these gates is about 22 nanometers, or billionths of a meter.

The 3-D design is critical because gate lengths of 22 nanometers and smaller do not work well in a flat transistor architecture. Engineers are working to develop transistors that use even smaller gate lengths; 14 nanometers are expected by 2015, and 10 nanometers by 2018.

However, size reductions beyond 10 nanometers and additional performance improvements are likely not possible using silicon, meaning new materials will be needed to continue progress, Ye said.

Creating smaller transistors also will require finding a new type of insulating, or "dielectric" layer that allows the gate to switch off. As gate lengths shrink smaller than 14 nanometers, the dielectric used in conventional transistors fails to perform properly and is said to "leak" electrical charge when the transistor is turned off.

Nanowires in the new transistors are coated with a different type of composite insulator, a 4-nanometer-thick layer of lanthanum aluminate with an ultrathin, half-nanometer layer of aluminum oxide. The new ultrathin dielectric allowed researchers to create transistors made of indium-gallium- arsenide with 20-nanometer gates, which is a milestone, Ye said.


'/>"/>

Contact: Emil Venere
venere@purdue.edu
765-494-4709
Purdue University
Source:Eurekalert

Related biology technology :

1. UCLA researchers demonstrate fully printed carbon nanotube transistor circuits for displays
2. New 3-D transistors promising future chips, lighter laptops
3. Carbon-based transistors ramp up speed and memory for mobile devices
4. NRL demonstrates high durability of nanotube transistors to the harsh space environment
5. Arteriocyte Takes the Lead in Promoting Building Future Pipeline of Women in STEM Career Fields
6. Discovery of a dark state could mean a brighter future for solar energy
7. Palm Beach Residents to Learn How the Future of Regenerative Medicine Will Combat Aging
8. The future of aerospace takes off in Montreal
9. Quantum dots brighten the future of lighting
10. CAS Names 2012 SciFinder® Future Leaders in Chemistry Program Participants
11. Tom Karagiannis, Ph.D. Awarded Future Fellowship by Australian Research Council (ARC)
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/10/2016)... ... February 10, 2016 , ... Curoverse announced ... On Azure, Arvados provides capabilities for managing and processing genomic and health data ... from major institutions collecting and analyzing genomic data,” said Adam Berrey chief executive ...
(Date:2/9/2016)... 9, 2016  Regenicin, Inc. (OTC Bulletin Board: ... the development and commercialization of regenerative cell therapies ... organs, recently reported the Company,s operating results for ... 2016. Lonza America , Inc. (the ... year in the process of consummating an agreement ...
(Date:2/9/2016)... ... February 09, 2016 , ... The American Academy of Thermology ... offering its 2016 AAT Member Certification Qualification Course for Technicians via a two part ... which will include a detailed review of hardware, software, and camera setup/operations, aligns with ...
(Date:2/9/2016)... , February 9, 2016 Web ... paper and protect IP   E-WorkBook 10 ... rolled out in Germany early this ... valuable IP. Users will be able to search for information ... as part of the application, to boost collaboration and productivity. ...
Breaking Biology Technology:
(Date:2/3/2016)... -- Vigilant Solutions announces today that the ... solved two recent hit-and-run cases with the ... Solutions. Brian Wenberg explains, "I was ... out of a convenience store and witnessed an elderly male back out ... his vehicle and leaving the scene.  In his statement ...
(Date:2/2/2016)... 2, 2016 Technology Enhancements Accelerate Growth of X-ray ... the digital and computed radiography markets in ... Indonesia (TIM). It provides an ... as well as regional market drivers and restraints. The ... penetration and market attractiveness, both for digital and computed ...
(Date:2/1/2016)... , Feb. 1, 2016  Wocket® smart wallet ( www.wocketwallet.com ) announces ... personality, Joey Fatone . Las Vegas , ... --> Las Vegas , where Joey appeared ... The new video ad was filmed at the Consumer Electronics Show ... the Wocket booth to meet and greet fans. ...
Breaking Biology News(10 mins):