Navigation Links
Nanowires may boost solar cell efficiency, UC San Diego engineers say

University of California, San Diego electrical engineers have created experimental solar cells spiked with nanowires that could lead to highly efficient thin-film solar cells of the future.

Indium phosphide (InP) nanowires can serve as electron superhighways that carry electrons kicked loose by photons of light directly to the devices electron-attracting electrode and this scenario could boost thin-film solar cell efficiency, according to research recently published in NanoLetters.

The new design increases the number of electrons that make it from the light-absorbing polymer to an electrode. By reducing electron-hole recombination, the UC San Diego engineers have demonstrated a way to increases the efficiency with which sunlight can be converted to electricity in thin-film photovoltaics.

Including nanowires in the experimental solar cell increased the forward bias current which is a measure of electrical current by six to seven orders of magnitude as compared to their polymer-only control device, the engineers found.

The online journal NanoLetters published this new work on polymer/nanowire hybrid photovoltaics in February 2008.

If you provide electrons with a defined pathway to the electrode, you can reduce some of the inefficiencies that currently plague thin-film solar cells made from polymer mixtures. More efficient transport of electrons and holes collectively known as carriers is critical for creating more efficient solar cells, said Clint Novotny the first author of the NanoLetters paper, and a recent electrical engineering Ph.D. from UC San Diegos Jacobs School of Engineering. Novotny is now working on solar technologies at BAE Systems.

Keep reading for more details on this project. To learn about another hot solar cell research on the nano-scale from electrical engineers at UC San Diego go to:

Simplified Nanowire Growth

The engineers devised a way to grow nanowires directly on the electrode. This advance allowed them to create the electron superhighways that deliver electrons from the polymer-nanowire interface directly to an electrode.

If nanowires are going to be used massively in photovoltaic devices, then the growth mechanism of nanowires on arbitrary metallic surfaces is an issue of great importance, said co-author Paul Yu, a professor of electrical engineering at UC San Diegos Jacobs School of Engineering. We contributed one approach to growing nanowires directly on metal.

The UCSD electrical engineers grew their InP nanowires on the metal electrode indium tin oxide (ITO) and then covered the nanowire-electrode platform in the organic polymer, P3HT, also known as poly(3-hexylthiophene). The researchers say they were the first group to publish work demonstrating growth of nanowires directly on metal electrodes without using specially prepared substrates such as gold nanodrops.

Just a layer of metal can work. In this paper we used ITO, but you can use other metals, including aluminum, said Paul Yu.

Growing nanowires directly on untreated electrodes is an important step toward the goal of growing nanowires on cheap metal substrates that could serve as foundations for next-generation photovoltaics that conform to the curved surfaces like rooftops, cars or other supporting structures, the engineers say.

By growing nanowires directly on an untreated electrode surface, you can start thinking about incorporating millions or billions of nanowires in a single device. I think this is where the field is eventually going to end up, said Novotny. But I think we are at least a decade away from this becoming a mainstream technology.

Polymer Solar Cells and Nanowires Meet

As in more traditional organic polymer thin-film solar cells, the polymer material in the experimental system absorbs photons of light. To convert this energy to electricity, each photon-absorbing electron must split apart from its hole companion at the interface of the polymer and the nanowire a region known as the p-n junction.

Once the electron and hole split, the electron travels down the nanowire the electron superhighway and merges seamlessly with the electron-capturing electrode. This rapid shuttling of electrons from the p-n junction to the electrode could serve to make future photovoltaic devices made with polymers more efficient.

In effect, we used nanowires to extend an electrode into the polymer material, said co-author Edward Yu, a professor of electrical engineering at UCSDs Jacobs School of Engineering.

While the electrons travel down the nanowires in one direction, the holes travel along the nanowires in the opposite direction until the nanowire dead ends. At this point, the holes are forced to travel through a thin polymer layer before reaching their electrode.

Todays thin-film polymer photovoltaics do not provide freed electrons with a direct path from the p-n junction to the electrode a situation which increases recombination between holes and electrons and reduces efficiency in converting sunlight to electricity. In many of todays polymer photovoltaics, interfaces between two different polymers serve as the p-n junction. Some experimental photovoltaic designs do include nanowires or carbon nanotubes, but these wires and tubes are not electrically connected to an electrode. Thus, they do not minimize electron-hole recombination by providing electrons with a direct path from the p-n junction to the electrode the way the new UCSD design does.

Before these kinds of electron superhighways can be incorporated into photovoltaic devices, a series of technical hurdles must be addressed including the issue of polymer degradation. The polymers degrade quickly when exposed to air. Researchers around the world are working to improve the properties of organic polymers, said Paul Yu.

As it was a proof-of-concept project, the UCSD engineers did not measure how efficiently the device converted sunlight to electricity. This explains, in part, why the authors refer to the device in their NanoLetters paper as a photodiode rather than a photovoltaic.

Having a more efficient method for getting electrons to their electrode means that researchers can make thin-film polymer solar cells that are a little bit thicker, and this could increase the amount of sunlight that the devices absorb.


Contact: Daniel Kane
University of California - San Diego

Related biology technology :

1. Spiraling nanotrees offer new twist on growth of nanowires
2. Engineers make first active matrix display using nanowires
3. Carbon nanotubes outperform copper nanowires as interconnects
4. Chemists measure copper levels in zinc oxide nanowires
5. High Q NIST nanowires may be practical oscillators
6. Carbon nanotubes to be replaced by MoSIx nanowires in high-tech devices says new study
7. LifeQuest World Launches Immune System Boosting Supplement to the North American Market
8. Biomatricas PCRboost(TM) Enables 5-Fold Improvement in Amplification of Difficult Samples
9. Boost for Malaria Vaccine Development by Combining Strengths of Dutch and American Researchers
10. Advanced Energy Consortium will develop micro and nanosensors to boost energy production
11. Three Steps to Boost Asymchems Investment in China
Post Your Comments:
Related Image:
Nanowires may boost solar cell efficiency, UC San Diego engineers say
(Date:11/25/2015)... Orexigen® Therapeutics, Inc. (Nasdaq: OREX ) ... chat discussion at the Piper Jaffray 27th Annual Healthcare ... discussion is scheduled for Wednesday, December 2, at 8:00 ... replay will be available for 14 days after the ... NormartVP, Corporate Communications and Business Development , BrewLife(858) 875-8629 ...
(Date:11/24/2015)... Nov. 24, 2015 Cepheid (NASDAQ: CPHD ... at the following conference, and invited investors to participate ...      Tuesday, December 1, 2015 at 11.00 a.m. ...      Tuesday, December 1, 2015 at 11.00 a.m. ... New York, NY      Tuesday, December ...
(Date:11/24/2015)... Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... on behalf of the Toronto Stock Exchange, confirms that ... are no corporate developments that would cause the recent ... --> --> About Aeterna Zentaris Inc. ... --> Aeterna Zentaris is a specialty biopharmaceutical ...
(Date:11/24/2015)... -- SHPG ) announced today that Jeff Poulton ... th Annual Healthcare Conference in New York City ... EST (1:30 p.m. GMT). --> SHPG ) announced today ... the Piper Jaffray 27 th Annual Healthcare Conference in ... 2015, at 8:30 a.m. EST (1:30 p.m. GMT). --> ...
Breaking Biology Technology:
(Date:11/12/2015)...  Arxspan has entered into an agreement with ... use of its ArxLab cloud-based suite of biological ... will support the institute,s efforts to electronically manage ... internally and with external collaborators. The ArxLab suite ... Institute,s electronic laboratory notebook, compound and assay registration, ...
(Date:11/9/2015)... Nov. 09, 2015 ... of the "Global Law Enforcement Biometrics ... --> ) has announced ... Enforcement Biometrics Market 2015-2019" report to ... Markets ( ) has announced the ...
(Date:10/29/2015)... , Oct. 29, 2015  The J. Craig Venter ... titled, "DNA Synthesis and Biosecurity: Lessons Learned and Options ... of Health and Human Services guidance for synthetic biology ... --> --> ... has the potential to pose unique biosecurity threats. It ...
Breaking Biology News(10 mins):