Navigation Links
Nanotechnology helps scientists keep silver shiny
Date:10/26/2012

There are thousands of silver artifacts in museum collections around the world, and keeping them shiny is a constant challenge. So scientists are using new technology to give conservators a helping hand. A team of researchers led by Ray Phaneuf, a professor of materials science and engineering at the University of Maryland, College Park, has partnered with The Walters Art Museum in Baltimore to investigate less labor-intensive ways to protect silver artifacts from tarnishing. The new techniques, which might keep silver surfaces shiny for longer than traditional methods, could help ensure that historically important artifacts are preserved for future generations to learn from and enjoy. The researchers will present their work at the AVS 59th International Symposium and Exhibition, held Oct. 28 Nov. 2, in Tampa, Fla.

Silver tarnishes when hydrogen sulfide in the air reacts with the silver, forming an unsightly black layer of silver sulfide on the surface of the artifact. If the tarnish appears on Grandma's silver flatware set, a little polisher and some elbow grease will easily remove it. But polishing, which works by dissolving or grinding away the silver-sulfide layer, can also remove some of the underlying silver, an undesirable outcome for priceless works of art.

Currently museum conservators can apply a thin layer of nitrocellulose lacquer to protect the silver. The coating is often hand-painted by a trained specialist and must be removed and reapplied an average of every thirty years. Phaneuf notes that it is difficult to apply a layer of even thickness over an entire piece, and the process of applying, removing, and reapplying the film is time-consuming.

"We did a quick back-of-the envelope calculation and found that for a big museum like the Metropolitan Museum of Art in New York, treating their entire silver collection with nitrocellulose films would likely be a never-ending task," says Phaneuf.

A quicker conservation method is to display silver pieces in an enclosed chamber with filtered air, but the chambers often leak, are expensive to install and maintain, and putting an artifact behind glass may prevent visitors from seeing the object up-close and from multiple angles.

Phaneuf and his colleagues are investigating a technique that could overcome some of the shortcomings of current preservation methods. Called atomic layer deposition (ALD), the process gives scientists atomic-level control over the thickness of a transparent oxide film that they grow on the surface of silver objects. By running a series of surface-limited chemical reactions, researchers can build the protective film one atom-thick layer at a time. The films Phaneuf and his team have tested are under 100 nanometers thick, less than 1/1000th the thickness of a human hair.

Phaneuf and his colleagues are currently experimenting by applying ALD films to highly uniform silver test wafers. The uniformity of the wafers allows the researchers to control variables, such as the composition of the silver, in order to create a model of the tarnishing kinetics as sulfur diffuses through the ALD film.

"This is when we get to put on our physicists' hats," Phaneuf says of simplifying the test cases and building a predictive model. The test case results showed two components to the concentration profile, indicating a faster rate of sulfur diffusion through tiny pinholes in the protective oxide film. The researchers are now experimenting with multilayer films that plug these pinholes.

Before the researchers use ALD on prized museum pieces, they will need to demonstrate that the coating can be removed without damaging the artifact, and that the thin film will have a minimal effect on the aesthetic look of the silver. In terms of appearance, ALD films may have another advantage over conventional nitrocellulose lacquer, which can yellow with age. Phaneuf and his colleagues are performing tests to measure how the thickness of the ALD films affects the way silver reflects light.

"Untreated silver beautifully reflects white light," Phaneuf explains. "You don't want the protective film to create interference effects that make it look blue or yellow." The expert eyes of art conservators will also help the researchers judge their success in this respect.

Phaneuf says that collaborating museums may soon allow the team to test their methods on forgeries of silver artifacts, and by year's end the team should be working with genuine pieces. "There is no shortage of complex objects this method might be applied to," Phaneuf notes. "There is a lot of interest now in the conservation community in how nanotechnology and other high technologies can be used to preserve art."


'/>"/>

Contact: Catherine Meyers
cmeyers@aip.org
301-209-3088
American Institute of Physics
Source:Eurekalert

Related biology technology :

1. UCLA physicists report nanotechnology feat with proteins
2. ResearchMoz: Nanotech Enabled Drug Delivery Therapeutics Market Will be $136 Billion by the Year 2021: Nanotechnology in Drug Delivery: Global Markets
3. Registration now open: 2012 Regional, State, and Local Initiatives in Nanotechnology
4. Air Force Office of Scientific Research hosts nanotechnology pioneer
5. UCF scientists use nanotechnology to hunt for hidden pathogens
6. Notre Dame paper examines nanotechnology-related safety and ethics problem
7. McLean Report on nanotechnology that may enhance medication delivery and improve MRI performance
8. Nanotechnology for Drug Delivery: Global Market for Nanocrystals
9. Syracuse University researchers use nanotechnology to harness power of fireflies
10. Shape-shifting materials are goal of new nanotechnology project
11. Breakthrough in nanotechnology
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/25/2017)... 2017 Providence -based ... novel immune-modulating technology to an undisclosed global pharmaceutical company, ... Tregitopes, pronounced TĀ·rejĀ·itopes, are a set of ... CEO Annie De Groot and EpiVax ... an autoimmune disease therapy, Tregitopes are capable of ...
(Date:4/24/2017)... Ca (PRWEB) , ... April 24, 2017 , ... ... proteins from thermal denaturation in a cellular milieu; however, the broad application of ... lack of simple platforms with sensitive quantitative readouts. Cell-based thermal stabilization assays are ...
(Date:4/21/2017)... ... April 21, 2017 , ... The University ... first round funding to three startups through the UConn Innovation Fund. The $1.5 ... business startups affiliated with UConn. , The UConn Innovation Fund provides investments of ...
(Date:4/21/2017)... ... , ... Frederick Innovative Technology Center, Inc. (FITCI), a business ... earned a $77,518 grant from the Rural Maryland Council (RMC) to support refurbishment ... first incubator. A non-profit corporation, FITCI is a public-private partnership of the governments ...
Breaking Biology Technology:
(Date:3/30/2017)... 30, 2017 The research team of The ... (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery ... of speed and accuracy for use in identification, crime investigation, immigration ... ... A research team ...
(Date:3/28/2017)... India , March 28, 2017 ... IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software ... Vertical, and Region - Global Forecast to 2022", published ... Billion in 2016 and is projected to reach USD ... between 2017 and 2022. The base year considered for ...
(Date:3/24/2017)... 2017 Research and Markets has announced the ... & Trends - Industry Forecast to 2025" report to their ... The Global ... CAGR of around 15.1% over the next decade to reach approximately ... the market estimates and forecasts for all the given segments on ...
Breaking Biology News(10 mins):