Navigation Links
Living cells behave like fluid-filled sponges
Date:1/7/2013

Animal cells behave like fluid-filled sponges in response to being mechanically deformed according to new research published today in Nature Materials.

Scientists from the London Centre for Nanotechnology (LCN) at UCL have shown that animal cells behave according to the theory of 'poroelasticity' when mechanically stimulated in a way similar to that experienced in organs within the body. The results indicate that the rate of cell deformation in response to mechanical stress is limited by how quickly water can redistribute within the cell interior.

Poroelasticity was originally formulated to describe the behaviour of water-saturated soils and has important applications in the fields of rock engineering and petro-physics. It is commonly used in the petroleum industry. Poroelastic models describe cells as being analogous to fluid-filled sponges. Indeed, cells are constituted of a sponge-like porous elastic matrix (comprising the cytoskeleton, organelles, and macromolecules) bathed in an interstitial fluid (the cytosol).

In this analogy, the rate at which the fluid-filled sponge can be deformed is limited by how fast internal water can redistribute within the sponge in response to deformation. This rate is dictated by three parameters: the stiffness of the sponge matrix, the size of the pores within the sponge matrix, and the viscosity of the interstitial fluid.

To study cellular responses, LCN scientists used cell-sized levers to apply rapid well-controlled deformations on the cell surface and monitored the temporal response of cells to these deformations. Close examination of the experimental results revealed that the rate of cellular deformation was limited by how rapidly water could redistribute within the cell interior. Experimental measurements indicated that this sponge-like behaviour of cells likely occurs during normal function of organs such as the lungs and the cardiovascular system.

Emad Moeendarbary, lead author of the paper from the LCN said: "In the cardiovascular system, some tissues encounter extreme mechanical conditions. Heart valves can typically withstand 7-fold increases in their length in less than one second. The poroelastic nature of cells may allow them to behave similarly to shock absorbers when exposed to these extreme mechanical conditions."

To experimentally verify the fluid-filled sponge model, researchers manipulated the size of the cellular pores using chemical and genetic tools and showed that the rate of cellular deformation was affected by the pore size, as suggested by the theory of poroelasticity.

Guillaume Charras, senior co-author of the paper from the LCN said: "Cells can detect the mechanical forces they are subjected to and modify their behaviour accordingly. How changes in the mechanical environment are converted into biochemical information that the cell can interpret remains unknown. A better understanding of the physics of the cellular material is a first step towards formulating possible mechanisms through which this could occur."


'/>"/>

Contact: Clare Ryan
clare.ryan@ucl.ac.uk
44-077-475-65056
University College London
Source:Eurekalert

Related biology technology :

1. 3-D movies in your living room -- without the glasses
2. Novo Nordisk To Award $80,000 To Local Programs That Help People Living With Diabetes In Detroit As Part Of Educational Initiative
3. JCVI Researchers, as Part of NIH Human Microbiome Project Consortium, Publish Papers Detailing the Variety and Abundance of Microbes Living on and in the Human Body
4. Harvards Wyss Institute creates living human gut-on-a-chip
5. Systems Alliance Launches Redesigned Website for The Living Legacy Foundation of Maryland
6. CellerateRX® Added to List of Preferred Products for Golden Living Healthcare Network
7. Mesenchymal Stem Cells Mobilize Body’s Own Healing Cells According to New Research Published in STEM CELLS Translational Medicine
8. Autoimmune disease retraining white blood cells
9. Breast cancer cells growing in 3D-matrix revert to normal
10. The birth of new cardiac cells
11. On the hunt for rare cancer cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
(Date:6/23/2016)... 23, 2016   Boston Biomedical , an ... designed to target cancer stemness pathways, announced that ... Orphan Drug Designation from the U.S. Food and ... cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin is ... inhibit cancer stemness pathways by targeting STAT3, and ...
(Date:6/23/2016)... 23, 2016  The Prostate Cancer Foundation (PCF) is pleased to ... faster cures for prostate cancer. Members of the Class of 2016 were selected ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... In a new case report published today ... a patient who developed lymphedema after being treated for breast cancer benefitted from an ... paradigm for dealing with this debilitating, frequent side effect of cancer treatment. ...
Breaking Biology Technology:
(Date:6/9/2016)... control systems is proud to announce the introduction of fingerprint attendance control software, allowing ... are actually signing in, and to even control the opening of doors. ... ... ... Photo - http://photos.prnewswire.com/prnh/20160609/377487 ...
(Date:6/2/2016)...   The Weather Company , an IBM Business (NYSE: ... capability in which consumers will be able to interact with ... via voice or text and receive relevant information about the ... Marketers have long sought an advertising solution that can create ... relevant and valuable; and can scale across millions of interactions ...
(Date:5/16/2016)...   EyeLock LLC , a market leader of ... an IoT Center of Excellence in Austin, ... of embedded iris biometric applications. EyeLock,s iris ... security with unmatched biometric accuracy, making it the most ... EyeLock,s platform uses video technology to deliver a fast ...
Breaking Biology News(10 mins):