Navigation Links
How long does a tuning fork ring?
Date:3/9/2011

This release is available in German.

From the wooden bars in a xylophone or the head of a drum, to the strings and sound box of a guitar or violin, musical instruments are the most familiar examples of mechanical resonators. The actual mechanical vibrations of these instruments create acoustic waves that we hear as sound. The purity of the emitted tone is intimately related to the decay of the vibration amplitude, that is, the mechanical losses of the system. A figure of merit for mechanical losses is the quality factor, simply called "Q", which describes the number of oscillations before the amplitude has decayed to a minute fraction of its starting value. The larger Q, the purer the tone and the longer the system will vibrate before the sound damps out.

In addition to the aesthetic examples found in a concert hall, mechanical resonators have become increasingly important for a wide variety of advanced technological applications, with such diverse uses as filtering elements in wireless communications systems, timing oscillators for commercial electronics, and cutting-edge research tools which include advanced biological sensors and emerging quantum electro- and optomechanical devices. Rather than producing pleasing acoustics, these applications rely on very "pure" vibrations for isolating a desired signal or for monitoring minute frequency shifts in order to probe external stimuli.

For many of these applications it is necessary to minimize the mechanical loss. However, it had previously remained a challenge to make numerical predictions of the attainable Q for even relatively straightforward geometries. Researchers from Vienna and Munich have now overcome this hurdle by developing a finite-element-based numerical solver that is capable of predicting the design-limited damping of almost arbitrary mechanical resonators. "We calculate how elementary mechanical excitations, or phonons, radiate from the mechanical resonator into the supports of the device", says Garrett Cole, Senior Researcher in the Aspelmeyer group at the University of Vienna. "This represents a significant breakthrough in the design of such devices."

The idea goes back to a previous work by Ignacio Wilson-Rae, physicist at the Technische Universitaet Muenchen. In collaboration with the Vienna group the team managed to come up with a numerical solution to compute this radiation in a simple manner that works on any standard PC. The predictive power of the numerical Q-solver removes the guesswork that is currently involved (e.g., trial and error prototype fabrication) in the design of resonant mechanical structures. The researchers point out that their "Q-solver" is scale independent and thus can be applied to a wide range of scenarios, from nanoscale devices all the way up to macroscopic systems.


'/>"/>

Contact: Dr. Andreas Battenberg
battenberg@zv.tum.de
49-892-891-0510
Technische Universitaet Muenchen
Source:Eurekalert  

Related biology technology :

1. Tuning graphene film so it sheds water
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
How long does a tuning fork ring?
(Date:8/22/2017)... ... August 22, 2017 , ... KBioBox ... patented KBioBox technology, the extended GUIDE-Seq ananlysis. KBioBox has adapted their core technology ... be provide scientists with easy to understand reports, extended indel analysis, and translocation ...
(Date:8/21/2017)... ... August 21, 2017 , ... Baltimore biotech firm, PathSensors, ... to bring its proprietary CANARY pathogen detection technology and high throughput testing solutions ... has purchased an undisclosed number of PathSensors’ Zephyr pathogen detection instruments and will ...
(Date:8/18/2017)... ... 18, 2017 , ... Producers of the award winning American ... an upcoming episode, scheduled to broadcast fourth quarter 2017. American Farmer airs Tuesdays ... independent, family-owned seed company. Educating audiences about its broad portfolio of products to ...
(Date:8/16/2017)... ... August 16, 2017 , ... Tunnell Consulting announced today that ... ISPE Annual Meeting and Expo , to be held October 29 through November ... is “Driving innovation to advance patient therapies.” , The ISPE Annual Meeting and Expo ...
Breaking Biology Technology:
(Date:4/13/2017)... 13, 2017 UBM,s Advanced Design and Manufacturing ... feature emerging and evolving technology through its 3D Printing ... run alongside the expo portion of the event and ... demonstrations focused on trending topics within 3D printing and ... manufacturing event will take place June 13-15, 2017 at the ...
(Date:4/11/2017)... , April 11, 2017 NXT-ID, ... security technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate ... ... NXT-ID, we look forward to their guidance and benefiting from ...
(Date:4/4/2017)... 4, 2017   EyeLock LLC , a leader ... United States Patent and Trademark Office (USPTO) has issued ... linking of an iris image with a face image ... the company,s 45 th issued patent. ... timely given the multi-modal biometric capabilities that have recently ...
Breaking Biology News(10 mins):