Navigation Links
Exotic particles, chilled and trapped, form giant matter wave
Date:5/25/2012

Physicists have trapped and cooled exotic particles called excitons so effectively that they condensed and cohered to form a giant matter wave.

This feat will allow scientists to better study the physical properties of excitons, which exist only fleetingly yet offer promising applications as diverse as efficient harvesting of solar energy and ultrafast computing.

"The realization of the exciton condensate in a trap opens the opportunity to study this interesting state. Traps allow control of the condensate, providing a new way to study fundamental properties of light and matter," said Leonid Butov, professor of physics at the University of California, San Diego. A paper reporting his team's success was recently published in the scientific journal Nano Letters.

Excitons are composite particles made up of an electron and a "hole" left by a missing electron in a semiconductor. Created by light, these coupled pairs exist in nature. The formation and dynamics of excitons play a critical role in photosynthesis, for example.

Like other matter, excitons have a dual nature of both particle and wave, in a quantum mechanical view. The waves are usually unsynchronized, but when particles are cooled enough to condense, their waves synchronize and combine to form a giant matter wave, a state that others have observed for atoms.

Scientists can easily create excitons by shining light on a semiconductor, but in order for the excitons to condense they must be chilled before they recombine.

The key to the team's success was to separate the electrons far enough from their holes so that excitons could last long enough for the scientists to cool them into a condensate. They accomplished this by creating structures called "coupled quantum wells" that separate electrons from holes in different layers of alloys made of gallium, arsenic and aluminum.

Then they set an electrostatic trap made by a diamond-shaped electrode and chilled their special semiconducting material in an optical dilution refrigerator to as cold as 50 milli-Kelvin, just a fraction of a degree above absolute zero.

A laser focused on the surface of the material created excitons, which began to accumulate at the bottom of the trap as they cooled. Below 1 Kelvin, the entire cloud of excitons cohered to form a single matter wave, a signature of a state called a Bose-Einstein condensate.

Other scientists have seen whole atoms do this when confined in a trap and cooled, but this is the first time that scientists have seen subatomic particles form coherent matter waves in a trap.

Varying the size and depth of the trap will alter the coherent exciton state, providing this team, and others, the opportunity to study the properties of light and mater in a new way.


'/>"/>
Contact: Susan Brown
scinews@ucsd.edu
858-246-0161
University of California - San Diego
Source:Eurekalert  

Related biology technology :

1. New study confirms exotic electric properties of graphene
2. Exotic behavior when mechanical devices reach the nanoscale
3. Food and Beverage Giant Joins Kannapolis Research Center
4. Bay Area Youth to Represent ALS Patients at Giants and Angels Baseball Games on July 4th
5. Nevada Burning Man Festival Sees Giant Aerial Marijuana Bud Banner That Protests Hydroponics Hijacking
6. Reuters Highlights NutraPharma Financial Giant Predicts NutraPharma (OTCBB: NPHC) Shares Likely to Outperform the Market
7. Abt Electronics Becoming the Green Giant of Independent Retailers
8. VIASPACE CEO Discusses Giant King Grass at Industrial Biotechnology Congress in China
9. Trouble with sputter? Blame giant nanoparticles
10. Nanowires exhibit giant piezoelectricity
11. Carbon nanotube muscles generate giant twist for novel motors
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Exotic particles, chilled and trapped, form giant matter wave
(Date:6/22/2017)... ... 2017 , ... For the months of May and June, ... series on “Cell Therapy Regulation” for its regenerative medicine followship. The ... regulatory challenges of stem cell medical research. , Stem cell clinical trials present ...
(Date:6/22/2017)... ... , ... Charm Sciences, Inc. is pleased to announce that its Charm Amphenicol ... as a screening test at dairies and farms for raw commingled cow milk. The ... EZ Lite system. These systems are a combination incubator and reader in one. , ...
(Date:6/20/2017)...  Kibow Biotech Inc., a pioneer in developing "Enteric ... a new patent covering a unique method for preventing ... and Trademark Office on May 23 rd 2017. ... Bio award in 2014 in San Diego, ... to chronic disease. Renadyl™, the first and only dietary ...
(Date:6/19/2017)... ... 2017 , ... As Vice President, Product Services, Mr. Guinter ... support, and client process and SOP development. , Mr. Guinter brings a wealth ... for service providers and top-tier pharmaceuticals, and as an independent consultant supported a ...
Breaking Biology Technology:
(Date:5/16/2017)... TEANECK, N.J. , May 16, 2017  Veratad ... leading provider of online age and identity verification solutions, ... the K(NO)W Identity Conference 2017, May 15 thru May ... Ronald Regan Building and International Trade Center. ... across the globe and in today,s quickly evolving digital ...
(Date:4/18/2017)... -- Socionext Inc., a global expert in SoC-based imaging and computing solutions, ... which features the company,s hybrid codec technology. A demonstration utilizing TeraFaces ... will be showcased during the upcoming Medtec Japan at Tokyo Big ... Las Vegas Convention Center April 24-27. ... Click here for an image of ...
(Date:4/11/2017)... DUBLIN , Apr. 11, 2017 Research ... Tracking Market 2017-2021" report to their offering. ... The global eye tracking market to grow at ... The report, Global Eye Tracking Market 2017-2021, has been prepared based ... report covers the market landscape and its growth prospects over the ...
Breaking Biology News(10 mins):