Navigation Links
Engineers make first 'active matrix' display using nanowires
Date:3/31/2008

WEST LAFAYETTE, Ind. - Engineers have created the first "active matrix" display using a new class of transparent transistors and circuits, a step toward realizing applications such as e-paper, flexible color monitors and "heads-up" displays in car windshields.

The transistors are made of "nanowires," tiny cylindrical structures that are assembled on glass or thin films of flexible plastic. The researchers used nanowires as small as 20 nanometers - a thousand times thinner than a human hair - to create a display containing organic light emitting diodes, or OLEDS. The OLEDS are devices that rival the brightness of conventional pixels in flat-panel television sets, computer monitors and displays in consumer electronics.

"This is a step toward demonstrating the practical potential of nanowire transistors in displays and for other applications," said David Janes, a researcher at Purdue University's Birck Nanotechnology Center and a professor in the School of Electrical and Computer Engineering.

The nanowires were used to create a proof-of-concept active-matrix display similar to those in television sets and computer monitors. An active-matrix display is able to precisely direct the flow of electricity to produce video because each picture element, or pixel, possesses its own control circuitry.

Findings will be detailed in a research paper featured on the cover of the April issue of the journal Nano Letters. The paper was written by researchers at Purdue, Northwestern University and the University of Southern California.

"We've shown how to fabricate nanowire electronics at room temperature in a simple process that might be practical for commercial manufacturing," said Tobin J. Marks, the Vladimir N. Ipatieff Research Professor in Chemistry in Northwestern's Weinberg College of Arts and Sciences and a professor of materials science and engineering.

OLEDS are now used in cell phones and MP3 displays and prototype television sets, but their production requires a complex process, and it is difficult to manufacture OLEDs that are small enough for high-resolution displays.

"Nanowire-transistor electronics could solve this problem," said Marks, who received a 2005 National Medal of Science. "We think our fabrication method is scalable, possibly providing a low-cost way to produce high-resolution displays for many applications."

Unlike conventional computer chips - called CMOS, for complementary metal oxide semiconductor chips - the nanowire thin-film transistors could be produced less expensively under low temperatures, making them ideal to incorporate into flexible plastics that would melt under high-temperature processing.

Conventional liquid crystal displays in flat-panel televisions and monitors are backlit by a white light, and each pixel acts as a filter that turns on and off to create images. OLEDS, however, emit light directly, eliminating the need to backlight the screen and making it possible to create more vivid displays that are thin and flexible.

The technology also could be used to create antennas that aim microwave and radio signals more precisely than current antennas. Such antennas might improve cell phone reception and make it more difficult to eavesdrop on military transmissions on the battlefield.

Electronic displays like television screens contain millions of pixels located at the intersections of rows and columns that crisscross each other. In the new findings, the researchers showed that they were able to selectively illuminate a specific row of active-matrix OLEDS in a display about the size of a fingernail.

"Displays in television sets are able to illuminate a particular pixel located, say, in the 10th row, fifth column," Janes said. "We aren't able to do that yet. We've shown that we can select a whole row at a time, not a single OLED, but we're getting close."

Future research is expected to include work to design displays that can control individual OLEDs to generate images, Janes said.

"A unique aspect of these displays is that they are transparent," he said. "Until the pixels are activated, the display area looks like lightly tinted glass."

The nanowire transistors are made of a transparent semiconductor called indium oxide, a potential replacement for silicon in future transparent circuits. The OLEDS consist of the transistors, electrodes made of a material called indium tin oxide and plastic capacitors that store electricity. All of the materials are transparent until activated to emit light.

"This could enable applications such as GPS navigational displays right on the windshield of your car," Janes said. "Imagine having a local map displayed on your windshield so that you didn't have to take your eyes off the road."

The new OLEDs have a brightness nearly comparable to that of the pixels in commercial flat-panel television sets. The OLEDS have an average brightness of more than 300 candelas per square meter, compared with 400-500 candelas per square meter for commercially available liquid-crystal display televisions.

"Even in this first demonstration, we are fairly close to the brightness you'd see in an LCD television," Janes said.

The researchers also demonstrated they could create OLEDS of the proper size for commercial displays, about 176 by 54 microns, or millionths of a meter. OLEDS that size would be ideal for small displays in cell phones, personal digital assistants and other portable electronics.


'/>"/>

Contact: Emil Venere
venere@purdue.edu
765-494-4709
Purdue University
Source:Eurekalert  

Related biology technology :

1. Penn engineers design computer memory in nanoscale form that retrieves data 1,000 times faster
2. Penn engineers design computer memory in nanoscale form that retrieves data 1,000 times faster
3. Harvard University engineers demonstrate quantum cascade laser nanoantenna
4. Cardiff University engineers give industry a moths eye view
5. Surface dislocation nucleation: Strength is but skin deep at the nanoscale, Penn engineers discover
6. Reclast(R) Receives US FDA Approval as First and Only Once-Yearly Treatment for Women With Postmenopausal Osteoporosis
7. GlaxoSmithKline Recognizes University of Michigans Dr. Daniel F. Hayes as the First Recipient of the Gianni Bonadonna Breast Cancer Award
8. Kewaunee Scientific Announces First Quarter Results and Quarterly Dividend
9. Genmab Announces 2007 First Half Year Results
10. Pharsight Achieves First License Sale for Public-Source Database
11. Novare Announces First Ever Single Port Laparoscopic Kidney Removal (Nephrectomy) Using RealHand(TM) HD Instruments
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Engineers make first 'active matrix' display using nanowires
(Date:3/27/2017)... 27, 2017 Cousins Properties (NYSE: CUZ ... biotechnology companies, has signed a 10-year, approximately 125,000 square-foot lease ... asset located in the Westshore submarket of Tampa, ... Amgen has chosen Corporate Center for their new location in ... president and chief executive officer of Cousins Properties. "Amgen is ...
(Date:3/27/2017)... March 27, 2017  The global market for ... according to a new report from Kalorama Information.  ... is performed to evaluate disease progression, monitor drug ... other reasons.  The healthcare market research firm,s report, ... provides an overview of the medical laboratory industry ...
(Date:3/27/2017)... ... March 27, 2017 , ... PMG Research is ... (CTC) conference presented by The Conference Forum in Boston on April 3-4, 2017. The ... drive improved clinical trial outcomes and bring them closer to the patient. Clinical Trial ...
(Date:3/27/2017)... DarioHealth Corp. (NASDAQ: DRIO), a leading global ... solutions, today announced that it is now offering a ... consumers who want to have their DarioHealth products reimbursed ... alliance agreements with partners across the U.S. who will ... approved, will supply and bill the customer,s insurance for ...
Breaking Biology Technology:
(Date:3/24/2017)... The Controller General of Immigration from Maldives Mr. Mohamed ... received the prestigious international IAIR Award for the most innovative high security ... ... Maldives Immigration Controller General, ... picture on the right) have received the IAIR award for the "Most ...
(Date:3/23/2017)... 2017 The report "Gesture Recognition and Touchless Sensing Market ... - Global Forecast to 2022", published by MarketsandMarkets, the market is expected to ... between 2017 and 2022. Continue Reading ... ... ...
(Date:3/22/2017)...   Neurotechnology , a provider of high-precision ... the release of the SentiVeillance 6.0 ... recognition using up to 10 surveillance, security and ... new version uses deep neural-network-based facial detection and ... a Graphing Processing Unit (GPU) for enhanced speed. ...
Breaking Biology News(10 mins):