Navigation Links
Engineers fine-tune the sensitivity of nano-chemical sensor
Date:5/8/2013

Researchers have discovered a technique for controlling the sensitivity of graphene chemical sensors.

The sensors, made of an insulating base coated with a graphene sheet--a single-atom-thick layer of carbon--are already so sensitive that they can detect an individual molecule of gas. But manipulating the chemical properties of the insulating layer, without altering the graphene layer, may yet improve their ability to detect the most minute concentrations of various gases.

The finding "will open up entirely new possibilities for modulation and control of the chemical sensitivity of these sensors, without compromising the intrinsic electrical and structural properties of graphene," says Amin Salehi-Khojin, assistant professor of mechanical and industrial engineering at the University of Illinois at Chicago, and principal investigator on the study. He and his coworkers at the UIC College of Engineering collaborated with researchers from the Beckman Institute and the Micro and Nanotechnology Laboratory at the University of Illinois at Urbana-Champaign and two institutions in Korea. Their findings are reported in the journal Nano Letter, available online in advance of publication.

Since its discovery nearly 10 years ago, graphene--in sheets, or rolled into nanotubes--has attracted huge scientific interest. Composed of a single layer of carbon atoms, graphene has potential for use in hundreds of high-tech applications. Its 2-D structure, exposing its entire volume, makes it attractive as a highly sensitive gas detector.

Salehi-Khojin's team, and others, earlier found that graphene chemical sensors depended on a structural flaw around a carbon atom for their sensitivity. They set out to show that "pristine" graphene sensors--made of graphene that was perfectly flawlesswouldn't work. But when they tested these sensors, they found they were still sensitive to trace gas molecules.

"This was a very surprising result," Salehi-Khojin said.

The researchers tested the sensor layer by layer. They found that pristine graphene is insensitive, as they had predicted.

They next set about removing any flaws, or reactive sites called dangling bonds, from the insulating layer. When a pristine insulating layer was tested with pristine graphene, again there was no sensitivity.

"But when dangling bonds were added back onto the insulating layer, we observed a response," said Bijandra Kumar, a post-doctoral research associate at UIC and first author of the Nano Letter study.

"We could now say that graphene itself is insensitive unless it has defects--internal defects on the graphene surface, or external defects on the substrate surface," said UIC graduate student Poya Yasaei.

The finding opens up a new "design space," Salehi-Khojin said. Controlling external defects in the supporting substrates will allow graphene chemFETs to be engineered that may be useful in a wide variety of applications.


'/>"/>

Contact: Jeanne Galatzer-Levy
jgala@uic.edu
312-996-1583
University of Illinois at Chicago
Source:Eurekalert

Related biology technology :

1. Stanford engineers use nanophotonics to reshape on-chip computer data transmission
2. Arizona State University engineers aim to improve performance of technology in extreme environments
3. Stanford engineers weld nanowires with light
4. Straintronics: Engineers create piezoelectric graphene
5. Cloak of invisibility: Engineers use plasmonics to create an invisible photodetector
6. Stanford engineers perfecting carbon nanotubes for highly energy-efficient computing
7. Engineers achieve longstanding goal of stable nanocrystalline metals
8. UCLA engineers develop new energy-efficient computer memory using magnetic materials
9. UT Arlington engineers working to prevent heat buildup within 3D integrated circuits
10. Cornell bioengineers discover the natural switch that controls spread of breast cancer cells
11. Forget about leprechauns, engineers are catching rainbows
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/18/2017)... ... January 18, 2017 , ... Opal Kelly, a leading ... PCI Express, announced the ZEM5310 USB 3.0 FPGA Module, combining a SuperSpeed USB ... sized form factor suitable for prototyping, testing, and production-ready integration. The ZEM5310 USB ...
(Date:1/18/2017)...   Parent Project Muscular Dystrophy (PPMD) , a ... muscular dystrophy (Duchenne) , today announced a $600,000 grant ... Technology (NJIT) and Talem Technologies (Talem) as part of ... to assist people living with Duchenne. PPMD is funding ... embedded computer, software, a force sensor and a motor ...
(Date:1/18/2017)... ... January 18, 2017 , ... Announced in December 2016, ... (MII). U.S. Secretary of Commerce Penny Pritzker has announced the award of a ... Defense has announced the award of a new Advanced Regenerative Manufacturing Institute (ARMI). ...
(Date:1/18/2017)... Chicago, IL (PRWEB) , ... January 18, 2017 ... ... auction on January 24th, 2017, to sell research and genetic testing lab equipment ... of service in the Northwest and Northeast regions of the United States. This ...
Breaking Biology Technology:
(Date:12/15/2016)... BADEN-BADEN, Germany , December 15, 2016 /PRNewswire/ ... services provider, today announced an agreement with NuData Security, ... join forces. The partnership will enable clients to focus on ... with local data protection regulation. ... In order to provide a one-stop ...
(Date:12/15/2016)... Dec 15, 2016 ... Research and Markets has announced the addition of ... The report forecasts the global military biometrics market to ... The report has been prepared based on an in-depth market analysis ... its growth prospects over the coming years. The report also includes a ...
(Date:12/15/2016)... Mich. , Dec. 15, 2016  There is ... car doors or starting the engine. Continental will demonstrate ... Las Vegas . Through the combination ... Start and Entry) and biometric elements, the international technology ... of vehicle personalization and authentication. "The integration ...
Breaking Biology News(10 mins):