Navigation Links
Endocrine Disrupting Chemicals Identified Using xCELLigence® Real-Time Cell Analysis
Date:3/20/2017

Endocrine-disrupting chemicals (EDCs) are substances that interfere with the ability of endogenous hormones to regulate homeostasis via their cognate nuclear receptors. By either mimicking ligands (agonists) or inhibiting ligand binding activity (antagonists), EDCs produce adverse reproductive, neurological, proliferative, and immunological disorders. EDC exposure can occur directly, through the use of consumer products which contain these compounds. Alternatively, because many constituents of consumer products, pesticides, and pharmaceuticals biodegrade poorly, they accumulate in the environment and can subsequently cause EDC exposure through dermal, inhalation, embryonic, and oral routes in both humans and wildlife. EDC-laden wastewater causing intersex characteristics in fish, and the correlation between breast cancer and bisphenol A are just two examples which highlight the severity of the EDC problem and the necessity of developing more efficient means of identifying these compounds prior to them being included in consumer products or being used openly in the environment.

The estrogen, androgen, and thyroid hormone systems are primary regulators of a broad array of critical physiological functions and are targets of numerous EDCs. The in vitro assays that have historically been employed to detect EDCs which interact with the estrogen receptor (ER), androgen receptor (AR), or thyroid hormone receptor (TR) only generate end point data – representing mere snapshots in the dynamic continuum of a cell’s response to a treatment/exposure. Working with such a limited data set can lead to spurious conclusions and poor predictivity of how a compound will behave in vivo.

Today ACEA Biosciences announced the development of a novel approach for detecting and characterizing EDCs in a wide variety of sample types using a panel of cell lines and their xCELLigence Real-Time Cell Analysis instruments. This methodology was summarized in an application note that can be viewed here. “This cell-based assay enables quantitative, noninvasive, and continuous monitoring of cellular responses to chemicals of interest. Moreover, it provides a substantial improvement in data quality and quantity all while being automated and having a very simple workflow,” said lead scientist Dr. Can Jin. Three mammalian cell lines, each of which is responsive to modulators of ER, AR, or TR, were analyzed for their real-time responses to reference agonists and antagonists. The unique specificity and sensitivity of each cell line to the different reference compounds were then used as standards that data from “unknown” compounds could be compared to. In addition to enabling the rapid and facile identification of EDC activity in previously uncharacterized compounds, the specific identity of the endocrine receptor that is being agonized or antagonized can be elucidated. “Employing multiple cell lines in this xCELLigence assay provides a multifaceted view of a potential EDC, thereby improving the predictive value of the assay,” said research scientist Dr. Diana Guimet. “This methodology can be expanded to study any type of nuclear receptor activation, given that the downstream effects involve changes in cell proliferation, morphology, and/or cell attachment quality.”

Learn more about xCELLigence RTCA, and how it is being used for diverse applications.

About xCELLigence®
ACEA’s xCELLigence® Real Time Cell Analysis (RTCA) instruments utilize gold microelectrodes embedded in the bottom of microtiter wells to non-invasively monitor the status of adherent cells using the principle of cellular impedance. In short, cells act as insulators – impeding the flow of an alternating microampere electric current between electrodes. This impedance signal is measured automatically, at an interval defined by the user (e.g. every 10 seconds, once per hour, etc.), and provides an extremely sensitive readout of cell number, cell size/shape, and cell-substrate attachment strength.

About ACEA Biosciences
Founded in 2002, ACEA Biosciences is a pioneer in the development and commercialization of high performance, cutting edge cell analysis platforms for life science research. ACEA’s xCELLigence® impedance-based, label-free, real-time cell analysis instruments and NovoCyte® flow cytometer are used in pre-clinical drug discovery and development, toxicology, safety pharmacology, and basic academic research. More than 2,000 instruments have been placed globally, leading to >1,250 peer reviewed publications.

For more information, click here.

For further information please contact:                                                                                    
ACEA Biosciences, Inc.                                                                                                                
Dr. Jeff Xue                                                                                                                                    
Phone: +1 858 724 0928 x 3075                                                                                                
email: jxue(at)aceabio(dot)com

Read the full story at http://www.prweb.com/releases/2017/03/prweb14162507.htm.


'/>"/>
Source: PRWeb
Copyright©2017 Vocus, Inc.
All rights reserved


Related biology technology :

1. Empire Genomics Licenses Novel DNA Biomarker for Use in Diagnosing and Creating a Companion Diagnostic Test for Neuroendocrine Prostate Cancer
2. Advancements in Endocrine Testing, New Life Science Webinar Hosted by Xtalks
3. Ipsen Announces the FDA Approval of Somatuline® Depot® (lanreotide) Injection for the Treatment of Gastroenteropancreatic Neuroendocrine Tumors
4. Disrupting the Playing Field: Where Sports, Innovation & Technology Collide
5. Probiotic Action Shares Insight for Parents on How to Treat Pre-Teen Acne without Chemicals
6. Bed Bugs Bum Rides on Taxis, Use of Non-Pesticide Bed Bug Spray Recommended by My Cleaning Products to Kill the Pests Without Strong Chemicals' Help
7. Held Up Mold Problem Gets Staten Island Residents Parading for City's Help, Tip How to Kill Mold Without Use of Harmful Chemicals Offered by My Cleaning Products
8. Steps for Getting Rid of Bed Bugs without Using Chemicals and Avoiding Them While Traveling Enumerated by My Cleaning Products in Its Latest Post
9. Lucintel Report Outlines $821.8 Billion Market for Global Basic Petrochemicals Industry by 2018
10. UPM Signs Joint Development Agreement with Renmatix in Biochemicals
11. DuPont Realigns Leadership Team to Accelerate Integrated Science Execution, Explores Strategic Alternatives for Performance Chemicals
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/25/2017)... , April 25, 2017 ... has licensed its novel immune-modulating technology to an undisclosed ... and allergy. Tregitopes, pronounced T·rej·itopes, are ... immunoglobulin by EpiVax CEO Annie De Groot ... intravenous immunoglobulin G, an autoimmune disease therapy, Tregitopes ...
(Date:4/24/2017)... ... 24, 2017 , ... It is well established that ligand ... broad application of this cellular target engagement concept to drug discovery has been ... stabilization assays are valuable methods for particular applications, but they can require target-specific ...
(Date:4/21/2017)... ... 2017 , ... The University of Connecticut, in partnership with ... startups through the UConn Innovation Fund. The $1.5 million UConn Innovation Fund was ... , The UConn Innovation Fund provides investments of up to $100,000 to companies ...
(Date:4/21/2017)... ... April 21, 2017 , ... Frederick Innovative ... range of emerging technology-based businesses, recently earned a $77,518 grant from the Rural ... Founded in 2004, FITCI is Frederick’s first incubator. A non-profit corporation, FITCI is ...
Breaking Biology Technology:
(Date:4/11/2017)... Research and Markets has announced the addition of the ... ... grow at a CAGR of 30.37% during the period 2017-2021. ... prepared based on an in-depth market analysis with inputs from industry ... over the coming years. The report also includes a discussion of ...
(Date:4/5/2017)... , April 5, 2017 Today HYPR ... that the server component of the HYPR platform is ... providing the end-to-end security architecture that empowers biometric authentication ... HYPR has already secured over 15 million users across ... manufacturers of connected home product suites and physical access ...
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University (PolyU) ... ground breaking 3D fingerprint minutiae recovery and matching technology, pushing contactless ... use in identification, crime investigation, immigration control, security of access and ... ... A research team led by Dr Ajay Kumar ...
Breaking Biology News(10 mins):