Navigation Links
Automated design for drug discovery
Date:12/12/2012

A system of 'automated design' for new drugs could help develop the complex therapies needed for many medical conditions while also improving drug safety and efficiency, new research from the University of Dundee has shown.

The 'Moneyball' approach taken by the research team utilises the principles of advanced statistical and data analysis which have seen to be increasingly influential in areas as varied as sport, finance and in forecasting the recent US Presidential election.

As more complex drugs are needed to treat more complicated problems - particularly in areas such as neuroscience, infectious diseases and cancer - the task facing biologists and chemists is daunting. However, researchers at the College of Life Sciences at Dundee, in collaboration with partners in North America, have shown that an automated computational process analysing huge amounts of existing data could provide a valuable new tool in drug discovery.

The innovative approach taken by the research team mimics the creative process of human chemists, where drug molecules are steadily improved through successive cycles of design and selection.

"One of the things that makes drug discovery so hard is that you're trying to improve several different properties at the same time," said Professor Andrew Hopkins, Chair of Medicinal Informatics at Dundee. "Evolution is a mechanism than can be applied to solving these kinds of optimisation problems, and the iterative process of adaption and selection of hundreds of thousand of possible solutions can be simulated in a computer.

"We have effectively proved the concept of automated design of new compounds, showing that by using algorithms to process massive amounts of data we can tackle problems of huge complexity. The system solves the design problem by using computational evolution to mimic the design process of human chemists but running it on a very large scale."

The research is published in the journal Nature. The research team's work is funded by the Biotechnology and Biological Sciences Research Council.

Drugs have to be able to deliver their primary effects and not present adverse side effects or toxicity that render them unsafe. But for complex conditions drugs also have to be designed to hit multiple targets. Designing drugs to this kind of multi-target profile is a complex and exceedingly difficult task for medicinal chemistry.

Professor Hopkins and colleagues developed an automated adaptive design approach that can mimic the creative, iterative process of medicinal chemists by using computational evolution of large numbers of compounds. They initially used it to look at an existing drug, Donepezil, which is used in treating Alzheimer's Disease.

"Professor Sir James Black, the Nobel Laureate and former Chancellor of the University, proposed that 'the most fruitful basis for the discovery of a new drug is to start with an old drug' and we followed that advice," said Professor Hopkins.

"We took the structure of Donepezil as a starting point and from there the system evolved its structure, computationally, over many generations to a variety of different profiles across a range of drug targets. The predicted profiles were then tested experimentally and we found that 75% of them were confirmed to be correct.

"This proof of concept shows that we could make significant advances in discovering and designing complex drugs, which could lead to improvements in safety and efficacy, while also potentially reducing the cost of drug discovery, which is a high-risk and expensive process."

Professor Hopkins said improvements in data capture and management were key to developing the research.

"Just a few years ago this would not have been possible because we need the existing drug data to build on and it was not held in a way that it could be analysed like this. But there have been significant developments, aided by groups like ChEMBL in Cambridge, who are funded by The Wellcome Trust, in making drug design data available in a format computers can process. What we have found particularly exciting is the way the algorithm has been able to learn from the human experience of drug design and mimic it on a massive scale to solve complex design problems."

This phenomenon is reflected in the name of a new spin out company which has been formed to commercialise the technology ex scientia which is the Latin for "from knowledge".


'/>"/>

Contact: Roddy Isles
r.isles@dundee.ac.uk
44-013-823-84910
University of Dundee
Source:Eurekalert

Related biology technology :

1. Automated Online Sample Preparation Comes to Waters UltraPerformance Liquid Chromatography (UPLC) Platform
2. VisionGate Reports Advances In Its Cell-CT(TM) Automated 3D Cell Analysis Platform At ASC 2012 Scientific Meeting
3. IMDx Obtains CE-Marking for an Automated Molecular Test for Detection and Differentiation of Herpes Simplex Viruses 1 and 2
4. JBT Corporation and Swisslog Enter Into Partnership for Automated Guided Vehicles
5. Milo Biotechnology Announces FDA Orphan Drug Designation for AAV1-FS344 for Treatment of Duchenne and Becker Muscular Dystrophy
6. iLuv Earns International Acclaim for Excellence and Innovation in Product Design
7. Spanish scientists design a revolutionary data storage device
8. Ben-Gurion University develops side-illuminated ultra-efficient solar cell designs
9. New study reveals challenge facing designers of future computer chips
10. New design could improve condenser performance
11. A New Dawn in Cosmetics Coverage: Cosmetics Design Launches Asia-Pacific News Website
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/27/2016)... ... May 27, 2016 , ... PBI-Gordon Corporation is pleased to announce Dave ... In his 15-year career with PBI-Gordon, Dave has served in a wide variety of ... in the development and launch of many of PBI-Gordon’s most successful products. , “Dave ...
(Date:5/27/2016)... , May 27, 2016 At present, ... playing in this space know that volatility is what makes ... companies on ActiveWallSt.com: Synta Pharmaceuticals Corp. (NASDAQ: SNTA ... Inc. (NASDAQ: LPTN ), and Heat Biologics Inc. ... access to the technical alerts for these stocks at: ...
(Date:5/26/2016)... May 26, 2016 Q BioMed Inc. ... will be a featured presenter at the 5th Annual Marcum ... New York City at the Grand Hyatt Hotel. ... Q BioMed Inc. CEO, is scheduled to begin at 11a.m ... company,s business strategy, recent developments and outline milestones for the ...
(Date:5/26/2016)... CA (PRWEB) , ... May 26, 2016 , ... ... and manufacturing company, today announced several positive developments that position the Company for ... a result of the transaction, Craig F. Kinghorn has been appointed Chairman of ...
Breaking Biology Technology:
(Date:3/22/2016)... , PROVO and ... -- Newborn Screening Ontario (NSO), which operates the highest ... for molecular testing, and Tute Genomics and UNIConnect, leaders ... technology respectively, today announced the launch of a project ... sequencing (NGS) testing panel. NSO has ...
(Date:3/17/2016)... 17, 2016 ABI Research, the leader ... global biometrics market will reach more than $30 ... from 2015. Consumer electronics, particularly smartphones, continue to ... anticipated to reach two billion shipments by 2021 ... Pavlakis , Research Analyst at ABI Research. "Surveillance ...
(Date:3/14/2016)... Florida , March 14, 2016 ... the growing mobile commerce market, announces the airing of a ... channels starting the week of March 21 st .  The ... CNBC, including its popular Squawk on the Street show. ... focused on the growing mobile commerce market, announces the airing ...
Breaking Biology News(10 mins):