Navigation Links
Advanced light source provides a new look at vanadium dioxide
Date:10/23/2013

Graphene may command the lion's share of attention but it is not the only material generating buzz in the electronics world. Vanadium dioxide is one of the few known materials that acts like an insulator at low temperatures but like a metal at warmer temperatures starting around 67 degrees Celsius. This temperature-driven metal-insulator transition, the origin of which is still intensely debated, in principle can be induced by the application of an external electric field. That could yield faster and much more energy efficient electronic devices.

"If the origin of this metal-insulator transition is electronic, the application of an electric field should trigger the transition on a picosecond or faster time-scale," says Nagaphani Aetukuri at the IBM-Stanford Spintronic Science and Applications Center (SpinAps). "This would be the basis for an ultrafast electronic switch, in which devices would be activated so quickly that very little energy would be lost through dissipation."

To determine the origin of the metal-insulator transition of vanadium dioxide, Aetukuri and a collaboration of researchers led by Stuart Parkin, of SpinAps and the IBM Almaden Research Center and Hermann Drr of the SLAC National Laboratory, studied thin films of the material at Berkeley Lab's Advanced Light Source (ALS). Using ALS beamline 4.0.2, an undulator beamline that can provide soft X-rays with variable linear polarization, they performed a series of strain-, polarization- and temperature-dependent X-ray absorption spectroscopy tests, in conjunction with X-ray diffraction and electrical transport measurements.

"Our results outlined the electronic properties that govern the metal-insulator transitions in vanadium dioxide and identified for the first time the respective roles of the Pi-symmetry and delta-symmetry electron orbitals," Aetukuri says. "We believe that the metallic phase of vanadium dioxide can be stabilized by populating the Pi-Symmetry orbitals, which means that engineering devices on a nanoscale that can selectively transfer electrons to the Pi-symmetry orbitals should trigger an insulator to metal transition."

This study was made possible by the X-ray beams at ALS beamline 4.0.2, which penetrated the vanadium dioxide thin films to a depth of about five nanometers, providing a bulk-sensitive probe with minimal effects from surface adsorbates.

Elke Arenholz, an ALS scientist who manages beamline 4.0.2, explains. "It was crucial for the experiment to be performed at a beamline where the orientation of the beam could be changed from parallel to perpendicular without moving the sample. Moreover, beamline 4.0.2 also provided the stability and accuracy needed to measure nanoscale effects."


'/>"/>

Contact: Lynn Yarris
lcyarris@lbl.gov
510-486-5375
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related biology technology :

1. Celladon Corporation Announces Publication of Long Term Follow-Up Results from the MYDICAR CUPID 1 Trial in Advanced Heart Failure
2. Discovery Meets Recovery in New Cedars-Sinai’s Advanced Health Sciences Pavilion Designed by HOK
3. Advanced Biologics Opens New and Expanded Headquarters in Carlsbad, California
4. Advanced Care Veterinary Services Proves Stem Cell Therapy May Be the Best Weapon in Fighting Pet Pain Due to Arthritis
5. Advanced Tissue Services Offering Discounts on Bio-specimens Utilized in Academic Research
6. 2013 NASA Advanced Technology Phase I Concepts Selected For Study
7. Primary Progression-Free Survival Endpoint Met in Phase III Study of Nintedanib Plus Docetaxel in Second-Line Advanced NSCLC
8. Syngenta Opens Unique $72 Million Advanced Crop Lab
9. Study: FOLFIRINOX Followed by Chemoradiation Shows Substantial Activity in Locally Advanced Pancreatic Cancer
10. Amphora Research Systems welcomes Advanced Polymer Monitoring Technologies
11. Photonics-Enabled Tools for Forensic Investigations to be Advanced at SPIE DSS
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Advanced light source provides a new look at vanadium dioxide
(Date:2/11/2016)... (PRWEB) , ... February 11, 2016 , ... ... for more than 150 years, continues today to pursue the highest level of ... of analytical instruments: the AR9 Refractometer and the AR5 Refractometer. Accurate, reliable ...
(Date:2/10/2016)... , Feb. 10, 2016  The Maryland House of ... has announced that University of Maryland School of Medicine ... and University of Maryland Medical System President and CEO ... "Speaker,s Medallion," the highest honor given to the public ... Dean Reece and Mr. Chrencik for ...
(Date:2/10/2016)... , Feb. 10, 2016  Allergan plc (NYSE: ... that Brent Saunders , Allergan,s CEO and President, ... fireside chat session at the RBC Capital Markets Healthcare ... ET at The New York Palace Hotel in ... be webcast live and can be accessed on Allergan,s ...
(Date:2/10/2016)... ... February 10, 2016 , ... SonaCare Medical, LLC reports ... program, Sonalink™ remote monitoring. The inaugural launch of this new technology occurred over ... Dr. Samuel Peretsman to a HIFU technical expert at SonaCare Medical headquarters. ...
Breaking Biology Technology:
(Date:2/3/2016)... , Feb. 3, 2016 ... the addition of the "Emotion Detection ... Machine Learning, and Others), Software Tools (Facial ... Areas, End Users,and Regions - Global forecast ... --> http://www.researchandmarkets.com/research/d8zjcd/emotion_detection ) has ...
(Date:2/2/2016)... Feb. 2, 2016 Technology Enhancements Accelerate Growth of ... of the digital and computed radiography markets in ... and Indonesia (TIM). It provides ... size, as well as regional market drivers and restraints. ... market penetration and market attractiveness, both for digital and ...
(Date:2/1/2016)... , Feb. 1, 2016  Today, the first ... (AHA) announced plans to develop a first of its ... power of IBM Watson. In the first application of ... IBM (NYSE: IBM ), and Welltok will create ... health assessments with cognitive analytics, delivered on Welltok,s health ...
Breaking Biology News(10 mins):