Navigation Links
A quantum dot energy harvester

A new type of nanoscale engine has been proposed that would use quantum dots to generate electricity from waste heat, potentially making microcircuits more efficient.

"The system is really a simple one, which exploits certain properties of quantum dots to harvest heat," Professor Andrew Jordan of the University of Rochester said. "Despite this simplicity, the power it could generate is still larger than any other nanoengine that has been considered until now." The engines would be microscopic in size, and have no moving parts. Each would only produce a tiny amount of power a millionth or less of what a light bulb uses. But by combining millions of the engines in a layered structure, Jordan says a device that was a square inch in area could produce about a watt of power for every one degree difference in temperature. Enough of them could make a notable difference in the energy consumption of a computer.

A paper describing the new work is being published in Physical Review B by Jordan, a theoretical physics professor, and his collaborators, Bjrn Sothmann and Markus Buttiker from the University of Geneva, and Rafael Snchez from the Material Sciences Institute in Madrid. Jordan explained that each of the proposed nanoengines is based on two adjacent quantum dots, with current flowing through one and then the other. Quantum dots are manufactured systems that due to their small size act as quantum mechanical objects, or artificial atoms.

The path the electrons have to take across both quantum dots can be adjusted to have an uphill slope. To make it up this (electrical) hill, electrons need energy. They take the energy from the middle of the region, which is kept hot, and use this energy to come out the other side, higher up the hill. This removes heat from where it is being generated and converts it into electrical power with a high efficiency.

To do this, the system makes use of a quantum mechanical effect called resonant tunneling, which means the quantum dots act as perfect energy filters. When the system is in the resonant tunneling mode, electrons can only pass through the quantum dots when they have a specific energy that can be adjusted. All other electrons that do not have this energy are blocked.

Quantum dots can be grown in a self-assembling way out of semiconductor materials. This allows for a practical way to produce many of these tiny engines as part of a larger array, and in multiple layers, which the authors refer to as the Swiss Cheese Sandwich configuration.

How much electrical power is produced depends on the temperature difference across the energy harvester the higher the temperature difference, the higher the power that will be generated. This requires good insulation between the hot and cold regions, Jordan says.


Contact: Leonor Sierra
University of Rochester

Related biology technology :

1. In new quantum-dot LED design, researchers turn troublesome molecules to their advantage
2. Pitt discoveries in quantum physics could change face of technology
3. Michael Cusumano, MITs Sloan Distinguished Professor of Management, Joins Quantum Leap Innovations Board of Directors
4. Quantum computing has applications in magnetic imaging, say Pitt researchers
5. Smaller and more powerful electronics requires the understanding of quantum jamming physics
6. Graphene quantum dots: The next big small thing
7. A new class of electron interactions in quantum systems
8. Single molecules in a quantum movie
9. Quantum control protocols could lead to more accurate, larger scale quantum computations
10. Quantum computer built inside a diamond
11. Raising the prospects for quantum levitation
Post Your Comments:
(Date:6/27/2016)... 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ("Biorem" or ... its major shareholders, Clean Technology Fund I, LP and ... based venture capital funds which together hold ... a fully diluted, as converted basis), that they have ... entire equity holdings in Biorem to TUS Holdings Co. ...
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... Parallel ... clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module ... circle with the physician and clinical trial team. , Using the CONSULT module, patients ...
(Date:6/27/2016)...  Liquid Biotech USA , ... Sponsored Research Agreement with The University of Pennsylvania ... cancer patients.  The funding will be used to ... clinical outcomes in cancer patients undergoing a variety ... employed to support the design of a therapeutic, ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
Breaking Biology Technology:
(Date:4/15/2016)... CHICAGO , April 15, 2016  A ... companies make more accurate underwriting decisions in a ... offering timely, competitively priced and high-value life insurance ... health screenings. With Force Diagnostics, rapid ... and lifestyle data readings (blood pressure, weight, pulse, ...
(Date:3/31/2016)... , March 31, 2016   ... ("LegacyXChange" or the "Company") LegacyXChange is excited ... of its soon to be launched online site for ... ) will also provide potential shareholders a ... DNA technology to an industry that is notorious for ...
(Date:3/22/2016)... PUNE, India , March 22, 2016 ... new market research report "Electronic Sensors Market for ... Fingerprint, Proximity, & Others), Application (Communication & ... and Geography - Global Forecast to 2022", ... consumer industry is expected to reach USD ...
Breaking Biology News(10 mins):