Navigation Links
Walking molecule now carries packages

A research team, led by UC Riverside's Ludwig Bartels, was the first to design a molecule that can move in a straight line on a flat surface. Now this team has found a way to attach cargo: two CO2 molecules, making the nano-walker a molecule carrier.

The work will be published Thursday, Jan. 18 in "Science Express" and later in the print-version of the journal "Science."

"This is an unprecedented step forward towards the realization of molecular-scale machinery," said Bartels, associate professor of chemistry and a member of UCR's Center for Nanoscale Science and Engineering. "Our experiments show a means to transport molecules reliably. This will become as important to the molecular machinery of the future as trucks and conveyor belts are for factories of today."

The last paper Bartels and his team published on this subject generated a great deal of interest. It was included in the American Institute of Physics "Top 25 Physics Stories for 2005." The new molecule carrier runs on a copper surface. It can pick up and release up to two carbon dioxide (CO2) molecules and carry them along its straight path.

"Carrying a load slows the molecule down" explained Bartels. "Attachment of one CO2 molecule makes the carrier need twice as much energy for a step, and a carrier with two CO2s requires roughly three times the energy. This is not unlike a human being carrying heavy loads in one or both hands." Bartels explained that using machines at the scale of single molecules will ultimate be the most efficient way to build objects or to deliver material.

"It resembles the way nature does it: the molecule carrier transports carbon dioxide across a surface," he said. "In the human body, the molecule hemoglobin carries oxygen from and carbon dioxide to the lungs, thereby allowing us to breathe ?and to live."

Bartels cautions, however, that this research is still in its infancy. "In 2005 we invented the molecular walker, whi ch moves in a straight line rather than hopping around in all directions as a normal molecule would do. Now it can carry a load."

Bartels said the continuing evolutionary process will take some time.

"Ten years ago, a cell phone could just place calls, nothing else. Now it plays mp3-files, organizes your day, lets you send emails and browse the web." He said his team will be pursuing the next step for this molecule carrier. "Next, we would like to be able to make one go around corners, rotate its cargo or send out photons to tell us where it is."

The molecule carrier is anthraquinone, which consists of three fused benzene rings with one oxygen atom on each side. An organic compound, anthraquinone is widely used in the pulp industry for turning cellulose from wood into paper. It is also the parent substance of a large class of dyes and pigments. Its chemical formula is C14H8O2.

The UCR study used a scanning tunneling microscope in Bartels's laboratory that gives a precise picture of individual molecules. Experiments took place on a highly polished copper surface, cleaned so that only the desired molecules were present on it. An individual anthraquinone molecule appears in Bartels' microscope as an almost rectangular feature with slightly rounded edges.


'"/>

Source:University of California - Riverside


Related biology news :

1. Walking not enough for significant exercise benefits
2. Chemists create Superbowl molecule; May lead to better health
3. Key molecule in plant photo-protection identified
4. Inflammatory molecules released by pollen trigger allergies
5. Researchers discover molecule that causes secondary stroke
6. Yale researchers identify molecule for detecting parasitic infection in humans
7. Scientists identify molecule that regulates well-known tumor suppressor
8. Medical molecules designed to respond to visible light that can penetrate tissue
9. Researchers find promising cancer-fighting power of synthetic cell-signaling molecule
10. Chemists synthesize molecule that helps body battle cancers, malaria
11. DNA constraints control structure of attached macromolecules
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/24/2017)... March 24, 2017 The Controller General of Immigration ... Abdulla Algeen have received the prestigious international IAIR Award for ... Continue Reading ... ... Deputy Controller Abdulla Algeen (small picture on the right) have received the ...
(Date:3/23/2017)... DUBLIN , Mar. 23, 2017 Research ... Anti-Theft System Market Analysis & Trends - Industry Forecast to 2025" ... ... to grow at a CAGR of around 8.8% over the next ... This industry report analyzes the market estimates and forecasts for all ...
(Date:3/22/2017)... March 21, 2017 Vigilant Solutions , ... law enforcement agencies, announced today the appointment of retired ... of public safety business development. Mr. Sheridan ... experience, including a focus on the aviation transportation sector, ... recent position, Mr. Sheridan served as the Aviation Liaison ...
Breaking Biology News(10 mins):
(Date:4/27/2017)... ... April 27, 2017 , ... ... mass flow controllers based on capillary thermal mass flow technology provide exponentially more ... control applications. Over 80% of all industrial processes—such as those involving chemical ...
(Date:4/27/2017)... April 27, 2017  Pendant Biosciences, Inc. (formerly Nanoferix, ... modification and drug delivery technologies, today announced that it ... @ Toronto . ... Pendant Biosciences, noted, "We are excited to become part ... community, and are honored to be the first ...
(Date:4/26/2017)... ... April 26, 2017 , ... Led by ex-FDA ... clinical trials comes to Tampa, San Francisco and Boston in 2017. The ... regulated organizations such as Pfizer Inc., Teva Pharmaceuticals, Advaxis, Inc., Ocular Therapeutix Inc., ...
(Date:4/26/2017)... ... April 26, 2017 , ... ... drive high-level conversations among healthcare industry stakeholders, the discussion surrounding the topic will ... place May 15-18, 2017 in Los Angeles, Calif. Hosted by the Workgroup for ...
Breaking Biology Technology: