Navigation Links
Single molecular 'mark' seen as pivotal for genome compaction in spores and sperm

In higher order animals, genetic information is passed from parents to offspring via sperm or eggs, also known as gametes. In some single-celled organisms, such as yeast, the genes can be passed to the next generation in spores. In both reproductive strategies, major physical changes occur in the genetic material after it has been duplicated and then halved on the way to the production of mature gametes or spores. Near the end of the process, the material ?called chromatin, the substructure of chromosomes ?becomes dramatically compacted, reduced in volume to as little as five percent of its original volume.

Researchers at The Wistar Institute, studying the mechanisms that control how the genetic material is managed during gamete production, have now identified a single molecule whose presence is required for genome compaction. Their experiments showed that the molecule "marks" the chromatin just prior to compaction and that its presence is mandatory for successful compaction. Additionally, after first noting the molecule's activity during the production of yeast spores, the scientists saw the same activity during the creation of sperm in fruit flies and mice, suggesting that the mechanisms governing genome compaction are evolutionarily ancient, highly conserved in species whose lineages diverged long ago. A report on the new study appears in the September 15 issue of Genes & Development. A "Perspectives" review in the same issue expands on the significance of the findings.

"This molecular mark is required at a critical time leading up to genome compaction in spores and sperm," says Shelley L. Berger, Ph.D., the Hilary Koprowski Professor at The Wistar Institute and senior author on the study. "Also, there seems to be a similarity in the way the mark is used in organisms as different from each other as yeast and mammals, suggesting that compaction has been important throughout evolution."

Berger speculates that compaction might answer a nu mber of important biological purposes.

"During the time the DNA is single-stranded, as it is in the gametes, it's much more susceptible to breaks and mutations," she says. "Compaction may keep the genome resistant to damage of all kinds. This is critical ?if the single-stranded DNA in gametes breaks, it can fall apart and possibly reassemble itself in devastating translocations."

She notes that normal double-stranded DNA, on the other hand, has the ability to repair breaks in one of its single strands by using the chemical bases in the companion strand as a reference. Bases in DNA pair only in predetermined combinations, so that one strand can serve as a template for the other.

"Compaction might also affect sperm fertility and function in the higher organisms, and thus the propagation of the species," says Thanuja Krishnamoorthy, Ph.D., lead author on the study. "It's vital that we better understand genome compaction during the production of mature sperm."

The molecule in question is a phosphorous molecule that modifies a histone. Histones are relatively small proteins around which DNA is coiled to create structures called nucleosomes. Compact strings of nucleosomes, then, form into chromatin, the substructure of chromosomes.

To test the team's observations, Krishnamoorthy performed an experiment in yeast in which she altered the histone's chemical composition at a single point, the point at which the molecule attaches to, or marks, the histone. The results were clear and compelling: With the alteration, the molecule was unable to attach to the histone, and compaction was severely limited.

"We saw a significant increase in genomic volume in the resulting yeast spores, as though the compaction had been lost," Berger says. "The frequency of successful spore creation was also lowered significantly."


'"/>

Source:The Wistar Institute


Related biology news :

1. Novel Asthma Study Shows Multiple Genetic Input Required; Single-gene Solution Shot Down
2. Single stem cells from bone heal a broken heart
3. Successful Test Of Single Molecule Switch Opens The Door To Biomolecular Electronics
4. Single-donor Islet Transplantation Procedure Shows Promise For Patients With Type 1 Diabetes
5. Single gene is genetic switch for fly sexual behavior
6. Single microRNA causes cancer in transgenic mouse
7. Single cell amoeba increases MRSA numbers 1000- fold
8. Single molecule extends fat mice lives by reversing gene pathways associated with disease in obese
9. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
10. Source of molecular triggers in cutaneous T cell lymphoma identified
11. Plants, animals share molecular growth mechanisms
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/11/2017)... Research and Markets has announced the addition of the ... ... grow at a CAGR of 30.37% during the period 2017-2021. ... prepared based on an in-depth market analysis with inputs from industry ... over the coming years. The report also includes a discussion of ...
(Date:4/6/2017)... April 6, 2017 Forecasts by ... Document Readers, by End-Use (Transportation & Logistics, Government & ... Gas & Fossil Generation Facility, Nuclear Power), Industrial, Retail, ... Are you looking for a definitive report ... ...
(Date:4/5/2017)... LONDON , April 4, 2017 KEY ... is anticipated to expand at a CAGR of 25.76% ... neurodegenerative diseases is the primary factor for the growth ... full report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The ... of product, technology, application, and geography. The stem cell ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... USA (PRWEB) , ... October 11, 2017 , ... ComplianceOnline’s ... take place on 7th and 8th June 2018 in San Francisco, CA. The Summit ... as well as several distinguished CEOs, board directors and government officials from around the ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions are ... 5.5 million people each year. Especially those living in larger cities are affected by ... in one of the most pollution-affected countries globally - decided to take action. , ...
(Date:10/10/2017)... Los Angeles, CA (PRWEB) , ... ... ... Pharmaceuticals, Inc., a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) ... all uses of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed ...
(Date:10/10/2017)... 10, 2017 SomaGenics announced the receipt of ... develop RealSeq®-SC (Single Cell), expected to be the first ... (including microRNAs) from single cells using NGS methods. The ... to accelerate development of approaches to analyze the heterogeneity ... "New techniques for measuring levels of mRNAs in individual ...
Breaking Biology Technology: