Navigation Links
Robotic whiskers can sense three-dimensional environment

Many mammals use their whiskers to explore their environment and to construct a three-dimensional image of their world. Rodents, for example, use their whiskers to determine the size, shape and texture of objects, and seals use their whiskers to track the fluid wakes of their prey.

Two Northwestern University engineers have been studying the whisker system of rats to better understand how mechanical information from the whiskers gets transmitted to the brain and to develop artificial whisker arrays for engineering applications.

Mitra J. Hartmann, assistant professor of biomedical engineering and mechanical engineering in the McCormick School of Engineering and Applied Science, and Joseph H. Solomon, one of Hartmann's graduate students, have now developed arrays of robotic whiskers that sense in two dimensions, mimicking the capabilities of mammalian whiskers. They demonstrate that the arrays can sense information about both object shape and fluid flow.

A paper about the arrays, which may find application on assembly lines, in pipelines or on land-based autonomous rovers or underwater vehicles, was published in the Oct. 5 issue of the journal Nature.

"We show that the bending moment, or torque, at the whisker base can be used to generate three-dimensional spatial representations of the environment," said Hartmann. "We used this principle to make arrays of robotic whiskers that in many respects closely replicate rat whiskers." The technology, she said, could be used to extract the three-dimensional features of almost any solid object.

Rat whiskers move actively in one dimension, rotating at their base in a plane roughly parallel to the ground. When the whiskers hit an object, they can be deflected backwards, upwards or downwards by contact with the object. The mechanical bending of the whisker activates many thousands of sensory receptors located in the follicle at the whisker base. The receptors, in turn, send neural si gnals to the brain, where a three-dimensional image is presumably generated.

Hartmann and Solomon showed that their robotic whiskers could extract information about object shape by "whisking" (sweeping) the whiskers across a small sculpted head, which was chosen specifically for its complex shape. As the whiskers move across the object, strain gauges sense the bending of the whiskers and thus determine the location of different points on the head. A computer program then "connects the dots" to create a three-dimensional representation of the object.

The researchers also showed that a slightly different whisker array -- one in which the whiskers were widened to provide more surface area -- could determine the speed and direction of the flow of a fluid, much like a seal tracks the wake of prey.


'"/>

Source:Northwestern University


Related biology news :

1. Penn Researchers Use Robotic Surgery
2. Penn Surgeons Use Completely Robotic Surgery to Successfully Treat Prostate Cancer
3. Robotic joystick reveals how brain controls movement
4. Robotic therapy helps restore hand use after stroke
5. Robotic exoskeleton replaces muscle work
6. Flick of whiskers helps tease out brains shadow signaling system
7. Bionic arm gives amputee sense of touch
8. To translate touch, the brain can quickly rearrange its sense of the body
9. Monkeys understand numbers across senses
10. Fighting malaria by manipulating mosquitoes sense of smell
11. Bacteria which sense the Earths magnetic field
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/20/2016)...  VoiceIt is excited to announce its new ... By working together, VoiceIt and VoicePass will offer ... take slightly different approaches to voice biometrics, collaboration ... usability. Both ... "This marketing and technology partnership allows ...
(Date:5/3/2016)...  Neurotechnology, a provider of high-precision biometric identification ... Identification System (ABIS) , a complete system for ... can process multiple complex biometric transactions with high ... face or iris biometrics. It leverages the core ... MegaMatcher Accelerator , which have been used in ...
(Date:4/26/2016)... , April 27, 2016 ... "Global Multi-modal Biometrics Market 2016-2020"  report to their ... , The analysts forecast the global ... of 15.49% during the period 2016-2020.  ... of sectors such as the healthcare, BFSI, transportation, ...
Breaking Biology News(10 mins):
(Date:6/27/2016)...  Liquid Biotech USA , ... Sponsored Research Agreement with The University of Pennsylvania ... cancer patients.  The funding will be used to ... clinical outcomes in cancer patients undergoing a variety ... employed to support the design of a therapeutic, ...
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/23/2016)... WA (PRWEB) , ... June 23, 2016 , ... ... announces the release of its second eBook, “Clinical Trials Patient Recruitment and Retention ... recruitment and retention in this eBook by providing practical tips, tools, and strategies ...
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
Breaking Biology Technology: