Navigation Links
Robotic exoskeleton replaces muscle work

A robotic exoskeleton controlled by the wearer's own nervous system could help users regain limb function, which is encouraging news for people with partial nervous system impairment, say University of Michigan researchers.

The ankle exoskeleton developed at U-M was worn by healthy subjects to measure how the device affected ankle function. The U-M team has no plans to build a commercial exoskeleton, but their results suggest promising applications for rehabilitation and physical therapy, and a similar approach could be used by other groups who do build such technology.

"This could benefit stroke patients or patients with incomplete injuries of the spinal cord," said Daniel Ferris, associate professor in movement science at U-M. "For patients that can walk slowly, a brace like this may help them walk faster and more effectively."

Ferris and former U-M doctoral student Keith Gordon, who is now a post-doctoral fellow at the Rehabilitation Institute of Chicago, showed that the wearer of the U-M ankle exoskeleton could learn how to walk with the exoskeleton in about 30 minutes. Additionally, the wearer's nervous system retained the ability to control the exoskeleton three days later.

Electrical signals sent by the brain to our muscles tell them how to move. In people with spinal injuries or some neurological disorders, those electrical signals don't arrive full strength and are uncoordinated. In addition, patients are less able to keep track of exactly where and how their muscles move, which makes re-learning movement difficult.

Typically, robotic rehabilitative devices are worn by patients so that the limb is moved by the brace, which receives its instructions from a computer. Such devices use repetition to help force a movement pattern.

The U-M robotic exoskeleton works the opposite of these rehabilitation aids. In the U-M device, electrodes were attached to the wearer's leg and those electrical signals rece ived from the brain were translated into movement by the exoskeleton.

"The (artificial) muscles are pneumatic. When the computer gets the electrical signal from the (wearer's) muscle, it increases the air pressure into the artificial muscle on the brace," Ferris said. "Essentially the artificial muscle contracts with the person's muscle."

Initially the wearer's gait was disrupted because the mechanical power added by the exoskeleton made the muscle stronger. However, in a relatively short time, the wearers adapted to the new strength and used their muscles less because the exoskeleton was doing more of the work. Their gait normalized after about 30 minutes.

The next step is to test the device on patients with impaired muscle function, Ferris said.
'"/>

Source:University of Michigan


Related biology news :

1. Penn Researchers Use Robotic Surgery
2. Penn Surgeons Use Completely Robotic Surgery to Successfully Treat Prostate Cancer
3. Robotic joystick reveals how brain controls movement
4. Robotic whiskers can sense three-dimensional environment
5. Robotic therapy helps restore hand use after stroke
6. Heart repair gets new muscle
7. Small worm yields big clue on muscle receptor action
8. New complete muscle grown in the lab
9. Spiders help scientists discover how muscles relax
10. Cant serve an ace? Could be muscle fatigue
11. Lance Armstrong through a physiological lens: hard training boosts muscle power 8%

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/9/2017)... MELBOURNE , Australia , March ... clinical study data at the prestigious World Lung Imaging ... Dr. Andreas Fouras , was invited to deliver ... and pulmonary medicine. This globally recognised event brings together ... and share the latest developments in lung imaging. ...
(Date:3/7/2017)... , March 7, 2017   HireVue , ... top global companies identify the best talent, faster, today ... Chief Sales Officer (CSO) and Diana Kucer ... round out a seasoned executive team poised to drive continued ... building on a year of record bookings in 2017. ...
(Date:3/2/2017)... , March 2, 2017 Summary ... to better understand Merck KGaA and its partnering interests ... https://www.reportbuyer.com/product/3605601/ Description The Partnering Deals and ... the partnering activity of one of the world,s leading ... are prepared upon purchase to ensure inclusion of the ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... SEATTLE , March 23, 2017 ... translational development of novel therapies in immuno-oncology, today ... to lead" small molecule compounds that activate interferon ... (RLR) pathways and demonstrate immune-mediated tumor regression in ... in the study who demonstrated complete tumor regression ...
(Date:3/23/2017)... According to a report by Transparency Market ... due to the presence of a large pool of participants; however, ... , and Sigma-Aldrich, compete with each other in this market. With ... than 76% of this market in 2016.  ... As of now, a large number of ...
(Date:3/23/2017)... March 23, 2017 In today,s ... equities in the Biotech industry: Sangamo Therapeutics Inc. (NASDAQ: ... (NYSE MKT: SYN), and Regulus Therapeutics Inc. (NASDAQ: ... 2017, Credit Suisse upgraded its rating on Pharmaceuticals/Biotechnology to "Overweight" from "Market ... free report at: ...
(Date:3/22/2017)... -- Regeneron Pharmaceuticals, Inc. (NASDAQ: REGN), today announced a major ... and GSK to generate genetic sequence data from the 500,000 ... enable researchers to gain valuable insights to support advances in ... serious and life threatening diseases. ... Genetic evidence has revolutionized scientific ...
Breaking Biology Technology: