Navigation Links
Patterns in genome organization may partially explain how microbial cells work

The location of a piece of real estate may be its most important feature to many Realtors, and bioengineering researchers at the University of California, San Diego (UCSD) and the University of Virginia have reported that the location of genes and other features distributed along the chromosomes of bacteria and simpler organisms also is fundamentally important to how microbial cells operate.

In a paper published Jan. 13 online in PLoS Computational Biology, the researchers reported large- and small-scale organizational patterns in the genomes of 135 bacteria ranging from those that cause typhoid fever and various other human infections to organisms that enrich the nitrogen content of soil. In addition, 16 more primitive microorganisms, including one that thrives in boiling hot springs, also exhibit patterns in their genomes that are highly nonrandom.

"This high degree of organization of prokaryotic genomes is a complete surprise, and this finding carried many implications that biologists might not have considered before," said Bernhard Palsson, a professor of bioengineering at UCSD's Jacobs School of Engineering and adjunct professor of medicine and co-author of the analysis. "These findings show that evolution of prokaryotes [organisms that lack nuclei] is constrained not just by variations in the content of genes, but also by the intricate ways in which those genes are arranged on chromosomes."

A bacterial cell usually operates with one copy of its genome. Until 2002, there had been no way to determine if a particular gene or area of the chromosome was segregated in any particular way inside the cell. New techniques that attach fluorescent "reporter" markers to predetermined spots on chromosomes have indicated that many bacterial genes tend to be found at specific cellular locations. Patterns are not obvious in the sequences of prokaryotic genomes, which led the team led by Palsson to use signal-processing methods to identify long-range spat ial patterns in the arrangement of most sequenced microbial genomes. They related the degree of organization in each genome they studied to various characteristics specific to each species.

"Bacterial chromosomes may have something like ZIP codes that fix groups of genes to certain locations within the cell where they are most needed," said Timothy E. Allen, a member of Palsson's team at UCSD who is currently an assistant professor of biomedical engineering at the University of Virginia. He said the surprising organization begs the question of what it means. The sequence order of bacterial genomes most likely affects the way in which the DNA is compressed, often more than 1,000-fold, to fit within the confines of the cell. "In some cases, it might suggest that a genome is arranged into relatively large physically distinct coils inside the cell, but nobody knows for certain," Allen said. "One of the take-home messages of our study is that we need to develop more ways to measure the location of specific genes within individual cells."

Palsson's team included Allen, recent Ph.D. graduate Nathan D. Price, and Ph.D. candidate Andrew R. Joyce. They downloaded the sequences of the 161 prokaryotic genomes from the CBS Genome Atlas Database and analyzed regions of each genome for the relative amount of four basic building blocks of DNA, the density of genes and expression level of those genes, and other factors.

To detect patterns in those features, they used wavelet analysis, a statistical technique used to identify patterns in geophysical data such as significant warming of the surface of the ocean off South America that causes El Niño climatic events. The wavelet analysis of bacterial genomes yielded "scalograms," maps colored to elucidate the strength of a variety of periodicities associated with chromosome position. Just as the wavelet analysis identified significant increases in sea surface temperatures; it also revealed nonrandom patterns in th e genomes of the 151 microorganisms studied.

"The analysis generated diagrams of psychedelically colored islands of statistically significant patterns floating in a sea of insignificant patterns," said Palsson, author of Systems Biology: Properties of Reconstructed Networks (Cambridge University Press, 2006). "Basically, it demonstrated that most bacterial genomes are highly organized. Our results demonstrate that there are significant evolutionary constraints that act upon genomes organization as well as upon genome content. That interplay between organization and function can't be ignored if we want to gain a better fundamental understanding of how a microbial cell works."


Source:University of California - San Diego

Related biology news :

1. Man and mouse share genome structures
2. Whole genome fine map of rice completed
3. Study finds more than one-third of human genome regulated by RNA
4. A bacterial genome reveals new targets to combat infectious disease
5. Scientists decipher genome of fungus that can cause life-threatening infections
6. Highly adaptable genome in gut bacterium key to intestinal health
7. Fleshing out the genome
8. Agilent Technologies new genome analysis technology set to accelerate Australia fight against mesothelioma
9. wFleaBase: the Daphnia genome database
10. NHGRI targets 12 more organisms for genome sequencing
11. Chimp genome reveals a retroviral invasion
Post Your Comments:

(Date:10/29/2015)... Today, LifeBEAM , a leader ... a global leader in technical performance sports clothing ... advanced bio-sensing technology. The hat will allow fitness ... biometrics to improve overall training performance. As a ... bring together the most advanced technology, extensive understanding ...
(Date:10/27/2015)... 27, 2015 Munich, Germany ... Mapping technology (ASGM) automatically maps data from mobile eye ... , so that they can be quantitatively analyzed ... Munich, Germany , October 28-29, 2015. SMI,s ... from mobile eye tracking videos created with SMI,s ...
(Date:10/26/2015)... , October 26, 2015 ... --> adds Biometrics Market ... 2021 as well as Emerging Biometrics ... reports to its collection of IT ... . --> ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... 24, 2015 --> ... report "Oligonucleotide Synthesis Market by Product & Services (Primer, ... Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical & Biotech, Diagnostic ... the market is expected to reach USD 1,918.6 Million ... a CAGR of 10.1% during the forecast period. ...
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model Aeronautics (AMA), ... MultiGP, also known as Multirotor Grand Prix, to represent the First–Person View (FPV) racing ... AMA members have embraced this type of racing and several new model aviation pilots ...
(Date:11/24/2015)... , November 24, 2015 ... market research report released by Transparency Market Research, the ... at a CAGR of 17.5% during the period between ... Market - Global Industry Analysis, Size, Volume, Share, Growth, ... non-invasive prenatal testing market to reach a valuation of ...
(Date:11/24/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) ... remaining 11,000 post-share consolidation (or 1,100,000 pre-share consolidation) ... B Warrants") subject to the previously disclosed November ... 2015, which will result in the issuance of ... the issuance of such shares, there will be ...
Breaking Biology Technology: