Navigation Links
Otherworldly bacteria discovered two miles down

Researchers have discovered an isolated, self-sustaining, bacterial community living under extreme conditions almost two miles deep beneath the surface in a South African gold mine. It is the first microbial community demonstrated to be exclusively dependent on geologically produced sulfur and hydrogen and one of the few ecosystems found on Earth that does not depend on energy from the Sun in any way. The discovery, appearing in the October 20 issue of Science, raises the possibility that similar bacteria could live beneath the surface of other worlds, such as Mars or Jupiter's moon Europa.

"These bacteria are truly unique, in the purest sense of the word," said lead author Li-Hung Lin, now at National Taiwan University, who performed many of the analyses as a doctoral student at Princeton and as a postdoctoral researcher at the Carnegie Institution's Geophysical Laboratory.

As Lin explained: "We know how isolated the bacteria have been because our analyses show that the water they live in is very old and hasn't been diluted by surface water. In addition, we found that the hydrocarbons in the local environment did not come from living organisms, as is usual, and that the source of the hydrogen (H2) needed for their respiration comes from the decomposition of water (H2O) by radioactive decay of uranium, thorium, and potassium."

Humans and most other land-dwelling organisms ultimately get their energy from the Sun, with photosynthetic plants forming the base of the food web. But in dark places where sunlight doesn't reach, life has to depend on other energy sources. Other communities of "chemoautotrophs"--a word chained together from Greek roots meaning "chemical self-nourishment"--have been found in exotic places such as aquifers, petroleum reservoirs, and vents linked to deep-sea volcanoes. Yet these communities all depend at least in part on nutrients that can be traced back to photosynthetic plants or bacteria.

The intern ational team led by T. C. Onstott of Princeton University,* which also includes Carnegie staff scientist Douglas Rumble and former Carnegie postdoctoral researcher Pei-Ling Wang, also now at National Taiwan University, found the community in a rock fracture that intersects the Mponeng gold mine near Johannesburg, South Africa. Water trapped in the fracture is home to the otherworldly bacteria.

Using genetic tools, the team discovered that there is very little species diversity in the rock fracture community. Compared with bacteria in the water used for mining, the fracture water is dominated by one type of bacteria related to Desulfotomaculum, which is known to get energy from the reduction of sulfur compounds.

"We also believe that the sulfate used by these creatures is left-over from ancient groundwater mixed with ancient hydrothermal fluid. We can detect that because the chemical signature arises from interacting with the fracture's wall rock," commented Rumble. "It is possible that communities like this can sustain themselves indefinitely, given enough input from geological processes. Time will tell how many more we might find in Earth's crust, but it is especially exciting to ponder whether they exist elsewhere in the solar system."


'"/>

Source:Carnegie Institution


Related biology news :

1. Anti-bacterial additive widespread in U.S. waterways
2. A bacterial genome reveals new targets to combat infectious disease
3. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
4. Scientists discover that host cell lipids facilitate bacterial movement
5. Family trees of ancient bacteria reveal evolutionary moves
6. Drug-resistant bacteria on poultry products differ by brand
7. Programmable cells: Engineer turns bacteria into living computers
8. NASA links nanobacteria to kidney stones and other diseases
9. Substance protects resilient staph bacteria
10. Physiological effects of reduced gravity on bacteria
11. Anammox bacteria produce nitrogen gas in oceans snackbar

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:8/23/2017)... general public,s help is being enlisted in what,s thought to be the ... the human body –and are believed to affect health.  ... The Microbiome Immunity Project is the largest study to ... The project's goal is to help advance scientific knowledge of the role ... The ...
(Date:7/20/2017)... DAL ) customers now can use fingerprints instead of their ... (DCA). ... launches biometrics to board aircraft at Reagan Washington National Airport ... Delta,s biometric boarding pass experience that launched in May at ... process to allow eligible Delta SkyMiles Members who are enrolled in CLEAR ...
(Date:6/23/2017)... ITHACA, N.Y. , June 23, 2017  IBM ... in dairy research, today announced a new collaboration using ... the chances that the global milk supply is impacted ... project, Cornell University has become the newest academic institution ... Chain, a food safety initiative that includes IBM Research, ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... ... Personal eye wash is a basic first aid supply for any work environment, but most ... you rinse first if a dangerous substance enters both eyes? It’s one less decision, and ... unique dual eye piece. , “Whether its dirt and debris, or an acid or alkali, ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... pathology, announced today it will be hosting a Webinar titled, “Pathology is going ... Pathology Associates , on digital pathology adoption best practices and how Proscia improves ...
(Date:10/11/2017)... Netherlands and LAGUNA HILLS, Calif. ... Institute of Cancer Research, London (ICR) ... MMprofiler™ with SKY92, SkylineDx,s prognostic tool to risk-stratify patients with ... known as MUK nine . The University of ... which is partly funded by Myeloma UK, and ICR will ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... compared the implantation and pregnancy rates in frozen and fresh in vitro ... of progesterone and maternal age to IVF success. , After comparing the results ...
Breaking Biology Technology: