Navigation Links
Otherworldly bacteria discovered two miles down

Researchers have discovered an isolated, self-sustaining, bacterial community living under extreme conditions almost two miles deep beneath the surface in a South African gold mine. It is the first microbial community demonstrated to be exclusively dependent on geologically produced sulfur and hydrogen and one of the few ecosystems found on Earth that does not depend on energy from the Sun in any way. The discovery, appearing in the October 20 issue of Science, raises the possibility that similar bacteria could live beneath the surface of other worlds, such as Mars or Jupiter's moon Europa.

"These bacteria are truly unique, in the purest sense of the word," said lead author Li-Hung Lin, now at National Taiwan University, who performed many of the analyses as a doctoral student at Princeton and as a postdoctoral researcher at the Carnegie Institution's Geophysical Laboratory.

As Lin explained: "We know how isolated the bacteria have been because our analyses show that the water they live in is very old and hasn't been diluted by surface water. In addition, we found that the hydrocarbons in the local environment did not come from living organisms, as is usual, and that the source of the hydrogen (H2) needed for their respiration comes from the decomposition of water (H2O) by radioactive decay of uranium, thorium, and potassium."

Humans and most other land-dwelling organisms ultimately get their energy from the Sun, with photosynthetic plants forming the base of the food web. But in dark places where sunlight doesn't reach, life has to depend on other energy sources. Other communities of "chemoautotrophs"--a word chained together from Greek roots meaning "chemical self-nourishment"--have been found in exotic places such as aquifers, petroleum reservoirs, and vents linked to deep-sea volcanoes. Yet these communities all depend at least in part on nutrients that can be traced back to photosynthetic plants or bacteria.

The intern ational team led by T. C. Onstott of Princeton University,* which also includes Carnegie staff scientist Douglas Rumble and former Carnegie postdoctoral researcher Pei-Ling Wang, also now at National Taiwan University, found the community in a rock fracture that intersects the Mponeng gold mine near Johannesburg, South Africa. Water trapped in the fracture is home to the otherworldly bacteria.

Using genetic tools, the team discovered that there is very little species diversity in the rock fracture community. Compared with bacteria in the water used for mining, the fracture water is dominated by one type of bacteria related to Desulfotomaculum, which is known to get energy from the reduction of sulfur compounds.

"We also believe that the sulfate used by these creatures is left-over from ancient groundwater mixed with ancient hydrothermal fluid. We can detect that because the chemical signature arises from interacting with the fracture's wall rock," commented Rumble. "It is possible that communities like this can sustain themselves indefinitely, given enough input from geological processes. Time will tell how many more we might find in Earth's crust, but it is especially exciting to ponder whether they exist elsewhere in the solar system."


'"/>

Source:Carnegie Institution


Related biology news :

1. Anti-bacterial additive widespread in U.S. waterways
2. A bacterial genome reveals new targets to combat infectious disease
3. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
4. Scientists discover that host cell lipids facilitate bacterial movement
5. Family trees of ancient bacteria reveal evolutionary moves
6. Drug-resistant bacteria on poultry products differ by brand
7. Programmable cells: Engineer turns bacteria into living computers
8. NASA links nanobacteria to kidney stones and other diseases
9. Substance protects resilient staph bacteria
10. Physiological effects of reduced gravity on bacteria
11. Anammox bacteria produce nitrogen gas in oceans snackbar

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/2/2017)... 2017  EyeLock LLC, a market leader of iris-based ... " What You Should Know About Biometrics in the ... authenticity is a growing concern. In traditional schemes, cryptography ... traditional authentication schemes such as username/password suffer from inherent ... offers an elegant solution to the problem of high-security ...
(Date:1/30/2017)... 2017   Invitae Corporation (NYSE: ... companies, today announced that it will report its fourth ... guidance on Monday, February 13, 2017, and Invitae,s management ... 4:45 p.m. Eastern / 1:45 p.m. Pacific. ... review financial results, guidance, and recent developments and will ...
(Date:1/24/2017)... 2017 Biopharm Reports has carried out ... of nuclear magnetic resonance spectroscopy (NMR). This involved ... current practices, developments, trends and end-user plans over ... and opportunities. These areas include growth in the ... and innovation requirements, hyphenated NMR techniques, main suppliers ...
Breaking Biology News(10 mins):
(Date:2/26/2017)... (PRWEB) , ... February 26, 2017 , ... Rob Lowe ... public television series. This series, called "Informed," focuses on issues that are important to ... on the climate change issue, which has been a hot topic around the world ...
(Date:2/24/2017)... , Feb. 24, 2017 Provectus ... or the "Company"), a clinical-stage oncology and dermatology ... the deadline to participate in its previously announced ... consisting of shares of common stock and Series ... holders of listed warrants. As ...
(Date:2/24/2017)... (PRWEB) , ... February 24, 2017 , ... FireflySci, Inc ... Founded in late 2014, FireflySci had the goal of bringing their powerful cuvette ... continues to shape the path that FireflySci is going on as they add yet ...
(Date:2/23/2017)... SAN RAFAEL, Calif., Feb. 23, 2017 ... of U.S. dollars, except per share data, unaudited)Three Months ... ChangeTotal BioMarin Revenue $ ...     22832%$ 1,117$   89026%Aldurazyme Net Product Revenue ... 906538%34823946%Naglazyme Net Product Revenue  ...
Breaking Biology Technology: