Navigation Links
Newly Discovered Compound Blocks Known Cancer-Causing Protein

Duke Comprehensive Cancer Center scientists have discovered a potential new drug that inhibits destructive cell signals that drive the growth of one-third of all cancers. The scientists showed they could block the growth of cultured colon cancer cells using this new compound, called cysmethynil.

Their finding, reported in the March 22, 2005, issue of Proceedings of the National Academy of Sciences, is the first step toward developing a new class of anti-cancer drugs that block the Icmt protein from activating uncontrolled cell growth, a hallmark of cancer, according to Patrick Casey, Ph.D. Casey is the study's senior investigator and Duke pharmacologist and cancer biologist.

Moreover, said Casey, their discovery is the first to emerge from the Duke Small Molecule Screening Facility, which houses a library of more than 13,000 compounds available for screening promising drugs with potential to fight cancer and other diseases. Using automated robotics, the facility provides the kind of drug discovery capability usually available only to pharmaceutical company scientists.

Duke's new facility is a finalist for one of six $9 million National Institutes of Health (NIH) grants that will create a national network of publicly accessible small molecule facilities and make them available to researchers nationwide.

Duke University has filed a patent application for cysmethynil, Casey said, and intends to shepherd it through the first steps of drug development by testing the compound in animal models of cancer.

The research was supported by grant from the NIH and a Howard Hughes Medical Institute predoctoral fellowship to Casey graduate student Ann M. Winter-Vann, the first author of the study.

"This is the first selective small molecule inhibitor of Icmt, a protein that has been shown to be an important player in keeping a cancer-causing gene called 'Ras' turned on inside cells," said Casey.

Ras is a normal genetic component of the cell, but mutations in the gene can cause it to become stuck in an "on" position, promoting uncontrolled cell growth. Mutations in Ras that permanently activate it have been found in half of all colon cancer and 90 percent of pancreatic cancers, among other cancers.

Casey and his colleagues in Duke's Department of Pharmacology and Cancer Biology have already discovered and developed another class of cancer drugs aimed at inhibiting the processing pathway --the prenylation pathway ?that regulates Ras.

Several years ago, Casey's laboratory was one of a handful to unravel how the prenylation pathway works. This accomplishment led pharmaceutical companies to test compounds that block another key player in the pathway, a protein called farnesyltransferase. Blocking this protein inhibits Ras' ability to send growth-promoting signals inside cells. Several such compounds have shown promise in treating leukemias and lymphomas and are now under consideration for final approval by the U.S. Food and Drug Administration.

Since that time, Casey and his colleagues have been studying another key player in the pathway, the Icmt enzyme. Icmt adds a chemical tag called a "methyl group" to Ras. This methyl tag enables Ras to be directed to its final destination in the cell, from where it can send signals for unchecked growth.

"Ras needs to be at the plasma membrane in order to function," he said. "By preventing Icmt from adding a methyl group, we can effectively shut down Ras' ability to function, stopping it from sending signals for uncontrolled growth."

Initial experiments showed that knocking out the Icmt protein using genetic targeting also inhibited Ras, so the scientists decided to search for an effective and specific molecule that could inhibit Icmt function.

"We were looking for a small molecule that inhibited this enzyme specifically, without interfering with the normal regulation of the cell," said Casey. "What we found was a series of 30 structurally related molecules, and we selected the one with the highest potency ?that is cysmethynil."

Once the scientists had identified cysmethynil, they worked with Duke chemist Eric Toone and chemistry graduate student David Gooden to synthesize the molecule and verify its chemical structure. A search of the chemical literature turned up no previous description of the chemical, leading the scientists to believe they had discovered a new chemical compound with a unique biological function.

When the scientists tested the compound's ability to inhibit Ras function in living cells, they found it blocked the ability of colon cancer cells to grow independently in soft agar, a typical test of the cancerous
potential of cells.

"The next step is to test cysmethynil in animal models," said Casey. "We don't know how the compound will be metabolized in living animals, but we are encouraged by our initial results."

Other Duke scientists contributing to the research are Rudi A. Baron, Waihay Wong, June dela Cruz, and John D. York.


'"/>

Source:DukeMedNews


Related biology news :

1. Newly-discovered class of genes determines ?and restricts ?stem cell fate
2. Newly discovered virus linked to childhood lung disorders and Kawasaki disease
3. Newly discovered pathway might help in design of cancer drugs
4. Newly Discovered Branding Process Helps Immune System Cells Pick Their Fights
5. Newly discovered protein an important tool for sleeping sickness research
6. Newly discovered genetic disease sheds light on bodys water balance
7. Newly Discovered Role for Heart Response Enzyme May Yield Better Heart Failure Therapy
8. Newly recognized gene mutation may reduce seeds, resurrect plants
9. Newly discovered birdlike dinosaur is oldest raptor ever found in South America
10. Fitting in: Newly evolved genes adopt a variety of strategies to remain in the gene pool
11. Newly identified mechanism helps explain why people of African descent are more vulnerable to TB
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/28/2017)... , March 28, 2017 The ... Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video Analytics, ... Region - Global Forecast to 2022", published by MarketsandMarkets, ... 2016 and is projected to reach USD 75.64 Billion ... and 2022. The base year considered for the study ...
(Date:3/24/2017)... 24, 2017 The Controller General of Immigration from ... Abdulla Algeen have received the prestigious international IAIR Award for the ... Continue Reading ... ... Controller Abdulla Algeen (small picture on the right) have received the IAIR ...
(Date:3/23/2017)... The report "Gesture Recognition and Touchless Sensing Market by Technology (Touch-based ... to 2022", published by MarketsandMarkets, the market is expected to be worth USD ... 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , Oct. ... Cancer Research, London (ICR) and University ... SKY92, SkylineDx,s prognostic tool to risk-stratify patients with multiple myeloma ... MUK nine . The University of Leeds ... partly funded by Myeloma UK, and ICR will perform the ...
(Date:10/10/2017)... ... 2017 , ... San Diego-based team building and cooking events company, Lajollacooks4u, has ... The bold new look is part of a transformation to increase awareness, appeal to ... period. , It will also expand its service offering from its signature gourmet cooking ...
(Date:10/10/2017)... 10, 2017 International research firm Parks Associates announced ... at the TMA 2017 Annual Meeting , October 11 in ... residential home security market and how smart safety and security products impact ... Parks Associates: Smart Home ... "The residential security market has ...
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
Breaking Biology Technology: