Navigation Links
New technique puts brain-imaging research on its head

It's a scene football fans will see over and over during the bowl and NFL playoff seasons: a player, often the quarterback, being slammed to the ground and hitting the back of his head on the landing.

Sure, it hurts, but what happens to the inside of the skull? Researchers and doctors long have relied upon crude approximations made from test dummy crashes or mathematical models that infer ?rather loosely ?what happens to the brain during traumatic brain injury or concussion.

But the truth is that the state of the art in understanding brain deformation after impact is rather crude and uncertain because such methods don't give any true picture of what happens. Now, mechanical engineers at Washington University in St. Louis and collaborators have devised a technique on humans that for the first time shows just what the brain does when the skull accelerates.

What they've done is use a technique originally developed to measure cardiac deformation to image deformation in human subjects during repeated mild head decelerations. Picture, if you will, a mangled quarterback's occipital bone banging the ground, then rebounding. The researchers have mimicked that very motion with humans on a far milder, gentler, smaller scale and captured the movement inside the brain by magnetic resonance imaging (MRI).

Philip Bayly, Ph.D., Lilyan and E. Lisle Hughes Professor in Engineering, Guy Genin, Ph.D., assistant professor of mechanical engineering, and Eric Leuthardt, MD, a Washington University neurosurgeon, tested seven subjects in an MRI and gathered data that show that the brain, connected to the skull by numerous vessels, membranes and nerves at the base, tries to pull away from all those attachments, leading to a significant deformation of the front of the brain. Bayly discussed the group's findings Nov. 10, 2005, at the annual meeting of the National Neurotrauma Society in Washington, DC.

Brain movie

According to Genin, t he subjects are placed in the soft netting of a head guide, and are asked to raise and lower their heads about an inch inside an MRI machine. The process is repeated several times as the MRI pieces together a complete movie of the brain's response to these skull motions.

"Phil (Bayly) has developed a set of state-of-the-art hardware and software to synchronize and analyze all of these measurements," said Genin. "The systems he has developed will allow us to explore a broad range of questions critical to understanding mild traumatic brain injury."

"It's an interesting thing that in many occipital impact injuries, people often find the greatest injury in the front of the brain," Bayly said. "That has been a puzzle for a long time and there have been numerous different explanations for it. What we see with the MRI is quite a bit of mechanical deformation in the front of the brain when the skull is hit from the rear. It seems to be because the brain is trying to pull away from some constraints in the front of the brain."

Bayly and his collaborators can apply the levels of deformation they have found with their subjects to in vitro experiments or to animal models to learn even more about brain matter deformation. They have done experiments on humans with the head dropping forward, and plan to study different acceleration profiles, including rotations.

"This method is a starting point that we hope will take the guesswork out of brain matter deformation analysis," Bayly said. "We can now quantify brain deformation from these very low, mild accelerations with MRI. We are working with Washington University School of Medicine faculty in hopes of some day developing therapeutic remedies for traumatic brain injuries and concussions.

"The most immediate application of our data will be in the development and validation of computer simulations of traumatic brain injury, which may ultimately reduce the need for direct experimentation. "

Bayly and Genin are collaborating with David Brody, MD, Ph.D., instructor in neurology at the Washington University School of Medicine, and Sheng K. Song, Ph.D., assistant professor of radiology, on other advanced MRI techniques with the hope of finding noninvasive ways to detect and characterize brain injuries.


'"/>

Source:Washington University in St. Louis


Related biology news :

1. New lab technique identifies high levels of pathogens in therapy pool
2. Brain-mapping technique aids understanding of sleep, wakefulness
3. Study reveals new technique for fingerprinting environmental samples
4. Researchers pioneer new gene therapy technique using natural repair process
5. Newer imaging techniques may lead to over-treatment
6. Gene silencing technique offers new strategy for treating, curing disease
7. Mosaic mouse technique offers a powerful new tool to study diseases and genetics
8. Researchers devise new technique for creating human stem cells
9. New technique rapidly detects illness-causing bacteria
10. New bioinformatics technique for systematically analyzing key regions in DNA that help control gene activity
11. New technique may speed DNA analysis
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/9/2016)... innovation leader in attendance control systems is proud to announce the introduction of fingerprint ... sure the right employees are actually signing in, and to even control the opening ... ... ... Photo ...
(Date:6/3/2016)... 2016 Das DOTM ... Nepal hat ein 44 Millionen ... Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an ... und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale ... teilgenommen, aber Decatur wurde als konformste und ...
(Date:6/2/2016)... 2016 Perimeter Surveillance & Detection ... Physical Infrastructure, Support & Other Service  The ... offers comprehensive analysis of the global Border Security ... revenues of $17.98 billion in 2016. Now: ... leader in software and hardware technologies for advanced video ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016  Sequenom, Inc. (NASDAQ: ... enabling healthier lives through the development of innovative products ... the United States denied its ... the claims of Sequenom,s U.S. Patent No. 6,258,540 (",540 ... criteria established by the Supreme Court,s Mayo Collaborative Services ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... the funding of a Sponsored Research Agreement with ... tumor cells (CTCs) from cancer patients.  The funding ... CTC levels correlate with clinical outcomes in cancer ... data will then be employed to support the ...
(Date:6/24/2016)... NC (PRWEB) , ... June 24, 2016 , ... Researchers ... the most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are ... to read it now. , Diagnostic biomarkers are signposts in the blood, lung ...
(Date:6/23/2016)... , June 23, 2016 A person commits a ... crime scene to track the criminal down. An ... Food and Drug Administration (FDA) uses DNA evidence to track ... Sound far-fetched? It,s not. The FDA has increasingly ... support investigations of foodborne illnesses. Put as simply as possible, ...
Breaking Biology Technology: