Navigation Links
New law for resolution allows unprecedented sharpness in fluorescence microscopy

Editor : Detailed Information with Figures (pdf download)

Max Planck researchers have succeeded in overcoming the law postulated by Ernst Abbe in 1873 for diffraction limited resolution in light microscopes. Stefan Hell and his co-workers have established a new law that promises unlimited resolution in fluorescence microscopy. Future applications range from the imaging of cell interiors to the measuring of lithographic structures in microchip manufacturing, and substantial improvements in the quantification of the reaction kinetics of organic molecules (Phys. Rev. Lett., April 15 and Phys. Rev. Lett. May 6).

Ever since its invention in the 17th century, the light microscope has served as a key instrument to the advancement of knowledge. For biology, this statement is true even today, since focused light is the only way to examine living cells non-invasively. However, because of the wave nature of light, focused light is subject to diffraction. As early as 1873, Ernst Abbe recognized that this fact imposes an absolute limit on resolution in microscopy. Abbe, whose 100th year death anniversary was in February, captured this limit in a formula, which states that objects at distances that are smaller than a certain limit cannot be separated in a light microscope. This resolution limit can be largely ascribed to the fact that light cannot be focused to a smaller spot due to diffraction. It seemed impossible to image details smaller than a distance where delta d is equal to 200nm using conventional lenses and visible light.

For a long time, Abbe's law was regarded as being insurmountable. For higher resolution, the textbook knowledge was that a complicated and costly electron or scanning tunneling microscope would be required. However, over the past few years, researchers from the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, have developed wi th Stimulated Emission Depletion (STED) microscopy, a physically consistent concept for breaking the diffraction limited resolution limit in fluorescence microscopy, and then verified it in experiments. Unlike in the light microscopes conceivable so far, in a STED microscope, the relevant focal fluorescence spot can, in principle, be reduced in size to the size of a molecule (2-5 nm). This is due to the fact that the spot size is no longer subject to Abbe's formula, but to a new law that differs from Abbe's original formula in a crucial factor - a square root term [1,2]:

In one of their latest publications [2], the Göttingen-based research team verifies this new law with their experiments. They show that even with conventional objectives and focused light, resolutions of 16 nm are feasible. Therefore for the first time ever, it has been demonstrated experimentally that even with focused-light optics, resolutions at the nano-level are possible in fluorescing samples. In an additional publication [3], the researchers show that STED microscopy allows one to image lithographic structures (which had been previously dyed with a fluorescent dye) of width as small as 40-80 nm, a size previously reserved for electron microscopy. This may be of importance for the lithographic manufacturing of microchips.

The reduction in size of the diameter of the effective fluorescence focus also has fundamental implications for methods that use fluorescence fluctuations to study the reaction kinetics of molecules in solutions. The smaller the focal volumes, the more effective and sensitive are these methods. Fluorescence fluctuation methods were also limited by diffraction as a result. Therefore, in a fourth study [4], the research team from Göttingen shows that using STED, measurement volumes notably below the resolution limit can be produced without confining the solution itself mechanically. This method may substantially improve the analysis of pharmaceutical active ingr edients and protein interactions in cells in future.

Original work:

[1]Hell, S. W.
Strategy for far-field optical imaging and writing without diffraction limit.
Phys. Lett. A 326(1-2): 140-145 (2004)

[2] Westphal, V., and S. W. Hell
Nanoscale Resolution in the Focal Plane of an Optical Microscope.
Phys. Rev. Lett. 94: 143903 (2005)

[3] Westphal, V., J. Seeger, T. Salditt and S. W. Hell
Stimulated Emission Depletion Microscopy on Lithographic Nanostructures.
J. Phys. B: At. Mol. Opt. Phys. 38: S695 - S705 (2005)

[4] Kastrup, L., H. Blom, C. Eggeling, S. W. Hell
Fluorescence Fluctuation Spectroscopy in Subdiffraction Focal Volumes.
Phys. Rev. Lett. 94: 178104 (2005)


'"/>

Source:Max-Planck-Gesellschaft


Related biology news :

1. High resolution snapshots detail dynamics of a cocaine antibody
2. High-resolution light microscope reveals the fundamental mechanisms of nerve communication
3. Recombination protein dynamics observed with single monomer resolution
4. With record resolution and sensitivity, tool images how life organizes in a cell membrane
5. Researchers find how protein allows insects to detect and respond to pheromones
6. Enzyme allows B cells to resist death, leading to leukemia
7. Tiny scaffolding allows stem cells to become working fat cells
8. Looks matter to female barn swallows
9. Stolen gene allows insect virus to enter cells
10. Researchers identify molecular anchor that allows bacterial invasion of central nervous system
11. Algal protein in worm neurons allows remote control of behavior by light
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/9/2016)... June 9, 2016  Perkotek an innovation leader in attendance control systems is proud ... work hours, for employers to make sure the right employees are actually signing in, ... ... ... ...
(Date:6/2/2016)... 2, 2016 The Department of Transport ... the 44 million US Dollar project, for the , ... including Personalization, Enrolment, and IT Infrastructure , to ... production and implementation of Identity Management Solutions. Numerous renowned international ... Decatur was selected for the most compliant ...
(Date:5/24/2016)... superior patient care by providing unparalleled technology to leaders of the medical imaging industry. ... recently added to the range of products distributed by Ampronix. Photo - ... ... ... ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... The immunohistochemistry (IHC) market is projected to reach ... during the forecast period of 2016 to 2021 dominated by immunohistochemistry ... the largest share of immunohistochemistry (IHC) market, by end user.   ... , , ... across 225 pages, profiling 10 companies and supported with 181 tables ...
(Date:11/30/2016)... ... November 30, 2016 , ... BEI Kimco, a ... with a flexure design that ensures high alignment accuracy by preventing unwanted shaft ... ideally suited where extreme precision is required, such as in medical equipment, laboratory ...
(Date:11/30/2016)... ALBANY, New York , November 30, 2016 /PRNewswire/ ... exceptionally consolidated as a few players hold a dominant ... Lonza Group, Charles River Laboratories International, Inc., and Merck ... global market in 2015. Transparency Market Research observes that ... they are focused on development products that are do ...
(Date:11/30/2016)... RATON, Fla. , Nov. 30, 2016 ... biotherapeutic products, is pleased to announce the addition of ... Avenue Kearney, Nebraska . The 15,200 ... business on November 29th, 2016 and brings the total ... Ileana Carlisle , BPC,s Chief Executive ...
Breaking Biology Technology: