Navigation Links
Hirsute Or Hairless? Two Proteins May Spell The Difference

If you're a cat fancier, you're well aware that hair follicles are expendable. The product of a spontaneous mutation that caught a cat breeder's eye, le chat nu, would quickly succumb in the wild—its winter coat consists of little more than a ridge of fur down the midback and tail—and needs special care to thrive as a pet. Hairless animals in the lab, on the other hand, can be very instructive. Understanding how hair develops sheds light on the fundamental processes that generate a wide range of tissues and organs, including the lungs, cornea, and mammary glands.

How complex, three-dimensional structures emerge from single sheets of cells is a fundamental question in developmental biology. The dispensability of hair follicles makes them the perfect model system for studying this question—specifically, how structures and organs develop from buds. In a new study, Elaine Fuchs and colleagues use a three-pronged approach—involving gene expression analysis, transgenic mice, and cell cultures—to study how epithelial buds, the precursors of hair follicles, form. Their experiments point to two key actors in a signaling pathway that molds a targeted cluster of cells into a hair bud.

During the budding process, overlapping signaling pathways from two adjacent embryonic cell layers—the epithelium and the mesenchyme—direct morphogenesis. The mesenchymal cells initiate the cell-to-cell “crosstalk?that controls bud formation by first directing a small cluster of epithelial cells to form a placode, the pouch that forms hair plugs. The placode in turn directs underlying mesenchymal cells to form the base of the hair follicle, called the dermal papilla, and both structures contribute to the mature hair follicle. During development, cells are constantly bombarded with external signals. The trick is figuring out which signals trigger the transcriptional and behavioral properties in cells that spur bud formation.

In previous experiments, Fuchs and colleagues show ed that reducing expression of E-cadherin—a membrane protein that forms the adhesive junctions between epidermal cells—is essential for allowing the cell remodeling required for bud formation. Here, the authors analyze the timing of external signals against the response of targeted cells to determine how targeted cells translate signals into changes in cell adhesion and remodeling, proliferation, and differentiation—the agents of most types of organogenesis.

Since Snail, a protein that impedes the transcription of a subset of genes, functions in many developmental processes requiring epithelial remodeling, the authors reasoned it might do the same in hair bud formation. Working with developing mouse embryos, they saw a spike in Snail expression on embryonic day 17.5, coinciding with hair bud formation, enhanced cell proliferation, and the down-regulation of E-cadherin. Artificially sustaining Snail expression in the skin of transgenic mice caused abnormal levels of cell proliferation in the epidermis and reduced cell adhesion.

Working with skin keratinocytes, precursors of hair fibers, Fuchs and colleagues explored several signaling proteins known to be involved in bud formation as possible activators of Snail expression. When the authors treated keratinocytes with small amounts of one stimulator, TGF-β2, they saw “rapid and transient induction of Snail.?Snail proteins were absent from 17.5-day-old knockout mice lacking TGF-β2 but not from their nonmutant littermates. Conversely, transgenic mice with elevated TGF-β2 signaling activity displayed ectopic expression of Snail. Knockout mice lacking TGF-β2 also showed higher levels of E-cadherin—normally down-regulated by Snail—than their nonmutant littermates.

Altogether, these findings suggest that TGF-β2 signaling transiently induces Snail, which in turn down-regulates E-cadherin and activates a proliferation pathway in the developing bud. Reduced E-cadherin, the authors conclude, appears to co ntribute to Snail-mediated enhanced proliferation by allowing proteins normally sequestered at the membrane to operate in a proliferation pathway after the number of cellular junctions diminishes. By identifying which molecules are active in specific cell types at specific developmental stages, this study lays the foundation for dissecting the mechanisms that connect two key processes—intercellular remodeling and proliferation—in epithelial development. And since the consequences of TGF-β2 activity seen here in the hair bud more closely resemble certain types of skin cancer progression than skin development, a mechanistic understanding of hair follicle development promises to shed light on how skin cancer develops as well.


'"/>

Source:PLoS


Related biology news :

1. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
2. Proteins stop blood-vessel and tumor growth in mice
3. Proteins spur diabetic mice models to grow blood vessels, nerves
4. Parallel evolution: Proteins do it, too
5. Proteins as parents
6. Proteins anchor memories in our brain
7. Proteins may behave differently in natural environments
8. Proteins necessary for brain development found to be critical for long-term memory
9. Proteins may predict lung transplant rejection
10. Proteins important in Alzheimers, Parkinsons disease travel in the slow lane
11. Spelling out cancer on the nanoscale
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/4/2017)... -- For the thousands of attendees at this year,s International Consumer Electronics Show ... biometric measurement devices and services, will be featuring its new line of ... Medical,s special CES Exhibit Suite , the new upper arm and ... WellnessConnected product platform.  Continue ... ...
(Date:12/20/2016)... 2016 The rising popularity of mobility ... is stoking significant interest in keyless access systems. ... low energy (BLE), biometrics and near-field communication (NFC) ... of wireless technologies in the automotive industry. This ... access systems opens the market to specialist companies ...
(Date:12/16/2016)... , Dec. 16, 2016 The global wearable medical ... 12.14 billion by 2021 from USD 5.31 billion in 2016, at ... ... mainly driven by technological advancements in medical devices, launch of a ... preference for wireless connectivity among healthcare providers, and increasing focus on ...
Breaking Biology News(10 mins):
(Date:1/24/2017)... /PRNewswire/ - ProMetic Life Sciences Inc. (TSX: PLI) (OTCQX: PFSCF), ... active lead drug candidate, PBI-4050, has been issued a ... and Healthcare Products Regulatory Agency ("MHRA") for the treatment ... designation is an early indication that a medicinal product ... Medicines Scheme ("EAMS"), intended for the treatment, diagnosis or ...
(Date:1/24/2017)... ... January 23, 2017 , ... Edward ... first-ever recipient of the National Academy of Sciences Prize in Food and Agriculture ... nutrition. , The annual National Academy of Sciences (NAS) Prize in Food and ...
(Date:1/24/2017)... , Jan. 23, 2017  Recognizing the ... on scientific discovery and solutions, the University of ... Frost Institutes for Science and Engineering to achieve ... mathematics (STEM) to help solve some of the ... Miami President Julio Frenk unveiled the ...
(Date:1/24/2017)... 2017   Instrument Business Outlook ( ... MN ) the 2016 Company of the ... newsletter tracking developments in the analytical and life ... consistently achieved outstanding technical, operational and financial results ... of IBO. "In 2016, Bio-Techne capitalized on opportunities ...
Breaking Biology Technology: