Navigation Links
First real-time view of developing neurons reveals surprises, say Stanford researchers

Scientists have believed that neurons need a long period of fine-tuning and training with other neurons before they take on their adult role. But after using new technology for the first time to watch these cells develop, a team of researchers at the Stanford University School of Medicine found that neurons come into this world with a good idea about what they'll become as adults.

The work, which is detailed in a paper in the March 24 issue of Neuron, took place in the brain of a small see-through fish called a zebra fish. Stephen Smith, PhD, professor of molecular and cellular physiology, and graduate student Christopher Niell immobilized a young fish at an age when the nerves first grow from the eye to reach the brain. Then, with the aid of a 6-foot-long laser and some fancy microscopy, the researchers were able to watch individual neurons as they matured in real time.

The pair specifically monitored hundreds of neurons in the region of the brain that respond to images. Niell set up a tiny LCD screen showing squares the size of the fish's favorite planktonic food moving up and down or left and right.

They expected to find that young neurons fire in response to a variety of different images, then refine their role over time so that in the adult fish the neurons only respond to images moving in a certain direction or near the left or right side of the visual field.

What they found was a surprise. As soon as the neurons were old enough to respond to the LCD screen, they specifically fired when they sensed only one type of movement. When the tiny square moved left to right, a distinct population of neurons turned fluorescent colors to indicate their activity. Moving the square the reverse direction triggered a different population of neurons to light up.

"At first we felt like we let some air out of our own tires with this finding," said Smith. His previous work had supported the prevailing idea that neurons need a period of fine -tuning before establishing their final identity.

Still, the experiments mark the first time researchers have been able to watch neurons in an entire region of the brain as they fire one by one in real time. The technical savvy involved in monitoring neurons will allow researchers to conduct experiments that were previously not possible.

While the research showed neurons firing in a more mature way than expected, it also revealed that neurons take their time establishing the final wiring of the brain. Young neurons send out branches in all directions in the hopes that some branches will connect to other neurons and form synapses that transfer information. As the neuron matures, some of these branches form stable synapses while others recede. This trial-and-error process is what establishes the final interconnected mesh of the brain.

Because the group could see the full branching structure of a neuron each time it fired, they could watch the branches grow and recede like a tree waving in the wind, losing the occasional twig. Over time, the network of branches stabilized into the mature form.

"We're looking at a dynamic process that nobody has ever seen before," Smith said.

Understanding how neurons mature into their adult role goes beyond zebra fish and their ability to see their eventual planktonic prey. "Probably these same processes are happening in our own brains all the time," Niell said. When people learn new skills or add memories to their overstuffed brains, new connections are required to retain that information.

Some diseases also seem to be caused by brain connections not forming normally. Dyslexia, for example, may be caused by connections failing to form between certain brain regions, whereas schizophrenia may result from too many connections forming.

What's more, any cure for spinal cord injuries will require new neurons to form the appropriate connections.


Source:Stanford University Medical Center

Related biology news :

1. Timing is everything: First step in protein building revealed
2. Emory Eye Center Implants Its First Retinal Chips In Patients With Retinitis Pigmentosa
3. First atlas of key brain genes could speed research on cancer, neurological diseases
4. First-ever Compounds To Target Only Metastatic Cells Are Highly Effective Against Breast, Prostate, And Colon Cancers
5. NYCs First Rapid HIV Drug-resistant AIDS Case Prompts Call to Step Up HIV Prevention
6. Breast-Cancer Risk Linked to Exposure to Traffic Emissions at Menarche, First Birth
7. Mayo Clinic Researchers Create Obedient Virus; First Step To Use Measles Virus Against Cancer
8. First frozen egg baby born in Canada
9. Human Cells Filmed Instantly Messaging for First Time
10. First North American Encapsulated Islet Transplant without Long-term Immune Suppression into a Patient with Type 1 Diabetes
11. First technology to remove prions that cause vCJD from blood launched
Post Your Comments:

(Date:4/17/2017)... -- NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or ... 2016 Annual Report on Form 10-K on Thursday April 13, 2017 ... ... Investor Relations section of the Company,s website at  under ... . 2016 Year Highlights: ...
(Date:4/11/2017)... 11, 2017 Crossmatch®, a globally-recognized leader ... today announced that it has been awarded a ... Activity (IARPA) to develop next-generation Presentation Attack Detection ... "Innovation has been a driving force within Crossmatch ... allow us to innovate and develop new technologies ...
(Date:4/11/2017)... 11, 2017 NXT-ID, Inc. (NASDAQ:   ... announces the appointment of independent Directors Mr. Robin D. ... Board of Directors, furthering the company,s corporate governance and expertise. ... Gino Pereira , ... forward to their guidance and benefiting from their considerable expertise ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... They call ... complex biological network, a depiction of a system of linkages and connections so ... PhD, associate professor of computer science at Worcester Polytechnic Institute (WPI) and director ...
(Date:10/12/2017)... JOHNSTON, Iowa (PRWEB) , ... October 12, 2017 ... ... company based in Vilnius, Lithuania, announced today that they have entered into a ... collaboration is to provide CRISPR researchers with additional tools for gene editing across ...
(Date:10/12/2017)... ... 12, 2017 , ... BioMedGPS announces expanded coverage of SmartTRAK ... module, US Hemostats & Sealants. , SmartTRAK’s US Market for Hemostats and Sealants ... sealants and biologic sealants used in surgical applications. BioMedGPS estimates the market will ...
(Date:10/12/2017)... (PRWEB) , ... October 12, ... ... ) has launched Rosalind™, the first-ever genomics analysis platform specifically designed for ... complexity. Named in honor of pioneering researcher Rosalind Franklin, who made a ...
Breaking Biology Technology: