Navigation Links
First production of human monoclonal antibodies in chicken eggs published in Nature Biotechnology

Chicken-produced antibodies demonstrate enhanced cell killing compared to conventionally produced anti-cancer antibodies

Origen Therapeutics today announced the first published scientific report of fully functional, human sequence monoclonal antibodies (mAbs) produced in chickens. The antibodies were expressed solely in the chicken oviduct and deposited into egg white in concentrations of 1-3 milligrams per egg. Moreover, antibodies produced in this manner demonstrated 10-100 fold greater cell-killing ability (ADCC) compared to therapeutic antibodies produced by conventional cell culture methods.

The new report was published in the September issue of Nature Biotechnology by researchers from Origen Therapeutics and their collaborators at Medarex, Texas A&M University and the University of California, Los Angeles. A research brief commenting on the potential impact of this development for the production of human therapeutic proteins was also published in the September issue of Nature Medicine.

"This work demonstrates the potential for producing therapeutic proteins with enhanced properties in the eggs of chickens as an alternative to established mammalian cell culture systems," said Robert J. Etches, Ph.D., D. Sc., Origen Therapeutics vice president, research. "Antibodies produced by this method had very similar physical and biological characteristics to those produced in CHO cells, including nearly identical binding curves, similar affinities, and an equal ability to be internalized by antigen on prostate cancer cells. At the same time, chicken-produced antibodies lacked the sugar residue, fucose, which greatly increases their cell-killing activity compared to CHO-produced antibodies."

To create the antibody-producing chickens, the researchers first inserted into chicken embryonic stem cells the genes encoding the antibody and the regulatory sequences restricting its deposition to egg white. The stem cells were then introduced into chick embryos. At this stage of development, the embryonic stem cells can make significant contributions to the developing chicken. Resulting chimeras with large contributions from the stem cells lay eggs containing milligram amounts of antibody, which is then separated from the egg white proteins generating the purified product.

"This work represents a considerable advance over past efforts to develop avian transgenes, which were limited to the insertion of only small pieces of DNA," commented Dr. Etches. "The technology described here is a general method for inserting DNA encoding proteins of essentially any size and complexity while achieving high levels of protein expression. Moreover, it is the only technology to date that restricts deposition of the therapeutic protein to egg white."

"Monoclonal antibodies have demonstrated great success as human therapeutics, with over 25 approved for human therapeutic use and an increasing number of these proteins in clinical development," continued Dr. Etches. "We expect the demand for more potent anti-cancer monoclonal antibodies and for lower production costs to increase at a rate that will tax existing cell culture production systems. The introduction of this new chicken-based production technology will be of considerable interest to an industry coping with the commercial supply of an ever increasing number of therapeutic antibodies."

"We believe the chicken system is an attractive one for therapeutic protein production compared to either plant systems or to other transgenic animal systems," said Robert Kay, Ph.D., Origen Therapeutics president and chief executive officer. "The fact that the chicken-produced anti-cancer antibodies show dramatically enhanced cell killing activity elevates the chicken system considerably relative to other non-traditional production technologies and some traditional cell culture methods as well."

"Furthermore," Dr. Kay continued, "unlike other transgenic an imal systems, the time from antibody identification to production in eggs can be as short as 8 months versus 18 months to 3 years for goats or cattle. The egg is sterile and stable, providing a good starting material for isolation and purification of the protein of interest. Moreover, conditions for good manufacturing practices have been long-established for vaccine production in chicken eggs."

"This work really exemplifies the spirit of our Small Business Innovation Research grant program," said Matthew E. Portnoy, Ph.D., program director at the National Institute of General Medical Sciences at the National Institutes of Health. "This new technology has the potential to drive down drug manufacturing costs, which could make medicines and health insurance plans less expensive for all of us."


'"/>

Source:emm4@pacbell.net


Related biology news :

1. Timing is everything: First step in protein building revealed
2. Emory Eye Center Implants Its First Retinal Chips In Patients With Retinitis Pigmentosa
3. First atlas of key brain genes could speed research on cancer, neurological diseases
4. First-ever Compounds To Target Only Metastatic Cells Are Highly Effective Against Breast, Prostate, And Colon Cancers
5. NYCs First Rapid HIV Drug-resistant AIDS Case Prompts Call to Step Up HIV Prevention
6. First real-time view of developing neurons reveals surprises, say Stanford researchers
7. Breast-Cancer Risk Linked to Exposure to Traffic Emissions at Menarche, First Birth
8. Mayo Clinic Researchers Create Obedient Virus; First Step To Use Measles Virus Against Cancer
9. First frozen egg baby born in Canada
10. Human Cells Filmed Instantly Messaging for First Time
11. First North American Encapsulated Islet Transplant without Long-term Immune Suppression into a Patient with Type 1 Diabetes
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/2/2016)... , Feb. 2, 2016 This BCC ... bioinformatic market by reviewing the recent advances in ... that drive the field forward. Includes forecast through ... Identify the challenges and opportunities that exist in ... software solution developers, as well as IT and ...
(Date:2/2/2016)... , Feb. 2, 2016  Based on its ... & Sullivan recognizes US-based Intelligent Retinal Imaging Systems ... Sullivan Award for New Product Innovation. IRIS, a ... North America , is poised to ... growing diabetic retinopathy market. The IRIS technology presents ...
(Date:1/28/2016)... SAN JOSE, Calif., Jan. 28, 2016 Synaptics (NASDAQ: ... financial results for its second quarter ended December 31, 2015. ... the second quarter of fiscal 2016 increased 2 percent compared to ... the second quarter of fiscal 2016 was $35.0 million, or $0.93 ... Non-GAAP net income for the first quarter of fiscal 2016 ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... , Feb. 10, 2016  Allergan plc (NYSE: ... announced that Brent Saunders , Allergan,s CEO and ... a fireside chat session at the RBC Capital Markets ... p.m. ET at The New York Palace Hotel in ... will be webcast live and can be accessed on ...
(Date:2/10/2016)... ... 10, 2016 , ... LATHAM, NEW YORK... Marktech Optoelectronics will feature ... in San Francisco’s Moscone Center from February 16-18, 2016, and at the healthcare-focused ... latest InGaAs PIN diode standard packages feature a TO-46 metal can with active areas ...
(Date:2/10/2016)... , ... February 10, 2016 , ... ... medicine, has announced a new agreement with Singapore-based Global Stem Cells Network (GSCN) ... the Philippines, Thailand and Singapore in the latest adipose and bone marrow therapies. ...
(Date:2/9/2016)... 9, 2016  Regenicin, Inc. (OTC Bulletin Board: ... the development and commercialization of regenerative cell therapies ... organs, recently reported the Company,s operating results for ... 2016. Lonza America , Inc. (the ... year in the process of consummating an agreement ...
Breaking Biology Technology: