Navigation Links
Divergent life history shapes gene expression in brains of salmon

Scientists working with salmon have found that gene expression in the brain can differ significantly among members of a species with different life histories. Their study indicates that roughly 15 percent of Atlantic salmon genes show differential expression in males who migrate from their freshwater birthplaces to mature in oceans versus those who do not leave the freshwater environment to mature.

The researchers, at Harvard University, the University of Massachusetts and the US Geological Survey, report the finding in the current issue of Proceedings of the Royal Society B. They compared female salmon, male salmon that will eventually undertake the well-known journey from their river birthplaces to oceans ? and then migrate heroically back upstream one to three years later to spawn ? and males of the same age known as "sneakers" that mature at greatly reduced size without leaving freshwater.

"The finding that hundreds of the nearly 3,000 genes we studied were expressed differently in the brains of sneakers and other male salmon came as a surprise," says Nadia Aubin-Horth, a postdoctoral researcher in the Bauer Center for Genomics Research in Harvard's Faculty of Arts and Sciences. "Since these males of the same species in the same wild environment differed only in their life history, we did not expect the expression of so many of their genes to differ."

Aubin-Horth and her colleagues were also surprised by some of the 17 separate classes of genes demonstrating differing activity levels.

"It makes sense that growth genes are suppressed in sneakers and genes associated with reproduction are expressed more, since these fish essentially trade bodily size for faster reproductive maturity," she says. "However, it was unexpected, for instance, that genes associated with learning and memory would be expressed at higher levels in the brains of sneakers. It's not yet clear why disparities like this would arise."

Aubin-Horth says it is impossible to tell as of yet whether the changes in gene expression are a cause or effect of the various physiological differences between sneakers and other salmon. Their work suggests that the "default" life cycle, in which male salmon spend several years in oceans before returning to freshwater to reproduce, may actually result from active inhibition of development into a sneaker. Previous studies have found that the proportion of sneakers in various salmon populations varies wildly; it appears that males that grow fastest early in life go on to become sneakers.

The study by Aubin-Horth and her colleagues differed from most examinations of divergent life histories, in any vertebrate species, in that it combined the use of wild individuals, caught in a tributary of the Connecticut River in western Massachusetts, with new functional genomics technologies to simultaneously monitor thousands of genes in individual tissues.

"Research like this was very difficult in the past because we lacked adequate tools to measure gene expression," Aubin-Horth says. "As a result almost nothing is known about the molecular basis of developmental plasticity such as that seen among 'sneaker' salmon."


Source:Harvard University

Related biology news :

1. Divergent mating systems and parental conflict as a barrier to hybridization in flowering plants
2. Restaurant seafood prices since 1850s help plot marine harvests through history
3. Finding rewrites the evolutionary history of the origin of potatoes
4. Illinois pig to make history as source of first complete swine genome
5. Coral stress like never in history
6. Ocean seep mollusks may share evolutionary history with other deep-sea creatures
7. Microfossils unravel climate history of tropical Africa
8. Pleasing plant shapes explained by new computer model
9. Gene linked with mental illness shapes brain region, researchers find
10. Alcohols effects on gene expression in the central nervous system
11. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
Post Your Comments:

(Date:10/29/2015)... , Oct. 29, 2015 Today, ... announced a partnership with 2XU, a global leader ... deliver a smart hat with advanced bio-sensing technology. ... other athletes to monitor key biometrics to improve ... strategic partnership, the two companies will bring together the ...
(Date:10/27/2015)... BERLIN, Germany , October 27, 2015 ... 2015. SMI,s Automated Semantic Gaze Mapping technology (ASGM) automatically ... SMI,s Eye Tracking Glasses , so that ... Suite BeGaze. --> Munich, Germany ... technology (ASGM) automatically maps data from mobile eye tracking ...
(Date:10/26/2015)... , October 26, 2015 /PRNewswire/ ... --> adds Biometrics ... to 2021 as well as Emerging ... research reports to its collection of ... . --> ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... SAN DIEGO , Nov. 24, 2015 Halozyme Therapeutics, ... Jaffray Healthcare Conference in New York on ... Dr. Helen Torley , president and CEO, will provide a ... New York at 1:00 p.m. ET/10:00 a.m. ... communication and investor relations, will provide a corporate overview. --> ...
(Date:11/24/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) ... of the Toronto Stock Exchange, confirms that as of ... corporate developments that would cause the recent movements in ... --> About Aeterna Zentaris Inc. ... Aeterna Zentaris is a specialty biopharmaceutical company engaged ...
(Date:11/24/2015)... ... 24, 2015 , ... The Academy of Model Aeronautics (AMA), led by its ... as Multirotor Grand Prix, to represent the First–Person View (FPV) racing community. , FPV ... embraced this type of racing and several new model aviation pilots have joined the ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris ... today that the remaining 11,000 post-share consolidation (or ... Warrants (the "Series B Warrants") subject to the ... on November 23, 2015, which will result in ... giving effect to the issuance of such shares, ...
Breaking Biology Technology: