Navigation Links
'Cellular antennae' on algae give clues to how human cells receive signals

By studying microscopic hairs called cilia on algae, researchers at UT Southwestern Medical Center have found that an internal structure that helps build cilia is also responsible for a cell's response to external signals.

Cilia perform many functions on human cells; they propel egg and sperm cells to make fertilization possible, line the nose to pick up odors, and purify the blood, among other tasks.

With such a range of abilities, cilia serve as both motors and "cellular antennae," said Dr. William Snell, a professor of cell biology at UT Southwestern and senior author of new research on cilia published in the May 5 issue of Cell.

Genetic defects in cilia can cause people to develop debilitating kidney disease or to be born with learning disabilities, extra fingers or toes, or the inability to smell.

But no one really knows how cilia work, or, in some parts of the body, what their function is.

"There are cilia all over within our brain, and we don't have a clue about what they're doing," Dr. Snell said.

He and his team use the microscopic green alga, Chlamydomonas reinhardtii, which has two individual cilia. This alga allows researchers to manipulate genes and study the resulting effects on cilia in a way that would be impossible in animals such as mice.

"Chlamy is one of the few model organisms in which it's possible to do these kinds of studies," Dr. Snell said.

Normally, cilia ?also called flagella ?are built and maintained by an internal bidirectional, escalator-like system that ferries molecules to and from the tips by a process called intraflagellar transport, or IFT.

The UT Southwestern researchers used a mutant temperature-sensitive strain of the alga that behaved normally at lower temperatures. At higher temperatures, however, the IFT process stopped, and its components disappeared from the cilia. The cilia themselves were still able to beat, or move back and forth, for about 40 m inutes before they began to shorten.

The team focused on fertilization of the alga, a process that requires a cilium to bind to a molecule on a cilium from a cell of the opposite mating type. They found that when the external molecule binds to a cilium, it activates an enzyme that signals the start of a chain of chemical reactions.

Although the cilia could move without IFT and bind to the molecules of the cilia of the opposite type, those cells were unable to respond to the signaling molecules. The failure to activate the chain of chemical reactions indicated that IFT was necessary for this function.

Analysis showed that the cilia signaling process was similar to that found in human cells, such as those in the nose involved in the sense of smell and those in the developing nervous system that sculpt our brains.

Uncovering this series of reactions will make it possible to test, for instance, drugs that can affect cilia, in the hope of finding substances that would also be effective in higher animals, Dr. Snell said.

"This is another example of how basic science research can have big results," he said. "Studies on Chlamydomonas will help us understand the unique qualities of cilia that have led to their use in chemosensory pathways in humans."


'"/>

Source:UT Southwestern Medical Center


Related biology news :

1. Evidence of 600-million-year old fungi-algae symbiosis discovered in marine fossils
2. Deep sea algae connect ancient climate, carbon dioxide and vegetation
3. The secret life of algae
4. A new male-specific gene in algae unveils an origin of male and female
5. Detecting microalgae in coastal waters
6. Chemicals in brown algae may protect against skin cancer
7. Florida Tech explores microalgae for biofuel
8. Common algae helps illustrate mammalian brain electrical circuitry
9. Insight into DNAs weakest links may yield clues to cancer biology
10. High-powered gene profiles provide clues to genes involved in common form of lung cancer
11. Genetic links could unlock clues to leading cause of blindness
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/22/2016)... According to the new market research report "Biometric System Market by Authentication ... (Hardware and Software), Function (Contact and Non-contact), Application, and Region - Global ... from USD 10.74 Billion in 2015 to reach USD 32.73 Billion by ... Continue Reading ... ...
(Date:11/17/2016)... Calif. , Nov. 17, 2016  AIC announces that it has just released ... in organizations that require high-performance scale-out plus high speed data transfer storage solutions. ... ... ... Setting up a high ...
(Date:11/14/2016)... SANTA CLARA, Calif. , Nov. 14, ... of the biometric identification market, Frost & ... Global Frost & Sullivan Award for Visionary ... leading player in the biometric identification market ... a multi-modal verification solution for instant, seamless, ...
Breaking Biology News(10 mins):
(Date:11/30/2016)... ... November 30, 2016 , ... T3D Therapeutics, ... new orally administered treatment for Alzheimer’s disease (AD), today announced that CEO, John ... clinical trial of T3D-959 in mild to moderate Alzheimer’s patients at CTAD 2016. ...
(Date:11/30/2016)... London, UK (PRWEB) , ... November 30, 2016 , ... ... old offices on Haymarket after five years and look forward to continuing their expansion ... heart of Soho, an area which has been traditionally favoured by the creative industries, ...
(Date:11/30/2016)... ... November 30, 2016 , ... Microbial genomics leader uBiome ... Arianna Huffington, as part of the Thrive Global pop-up store. This stunning 5,000 ... to explore the microorganisms in their gut, collectively known as the microbiome. , ...
(Date:11/30/2016)... FRANCISCO , November 30, 2016 The global  HIV-1 ... 2025, growing at a CAGR of 1.4%. According to a new report by ... public health issues worldwide. Continue Reading ... ... , , ...
Breaking Biology Technology: