Navigation Links
A bacterial genome reveals new targets to combat infectious disease

More than a billion people are at risk for infection with filarial nematodes, parasites that cause elephantiasis, African river blindness, and other debilitating diseases in more than 150 million people worldwide. The nematodes themselves play host to bacteria that live within their cells, but in this case, the relationship is classic mutualism, with each benefiting from the other. Indeed, the Wolbachia bacterium is so crucial to its host nematode that apparently eradicating it with antibiotics severely compromises the nematode's ability to complete its life cycle within its human host. Thus, understanding the details of this relationship may help identify new strategies for controlling diseases caused by filarial nematodes. In a new study published in the freely-available online journal PLoS Biology, Barton Slatko and colleagues present the complete DNA sequence of the Wolbachia pipientis strain within Brugia malayi, a parasitic nematode responsible for lymphatic filariasis.

This Wolbachia genome is small, only about a million base pairs, and many metabolically critical genes have degraded through mutation to the point of uselessness. This phenomenon, called reductive evolution, is typical of long-term symbioses, as the two partners increasingly complement one another's biochemical activities.

Slatko and colleagues enumerate a variety of pathways that have either been degraded or preserved, and highlight patterns in the genome structure through comparisons with other bacteria. For example, Wolbachia can manufacture some essential metabolic coenzymes, which do not appear to be made by its host. Conversely, it cannot synthesize amino acids and a variety of other vitamins and cofactors, and probably depends on the nematode to supply them.

One discovery of possible significance is the presence in the bacterium of the synthetic pathway for heme - the oxygen-carrying iron component of hemoglobin. The nematode may require heme for synthesis of devel opmental hormones, so Wolbachia's heme pathway may be an inviting target for therapy against nematode infection. Since no new antifilarial has been developed in two decades, these results may quickly lead to new therapeutic strategies against these parasites.

###

Citation: Foster J, Ganatra M, Kamal I, Ware J, Makarova K, et al. (2005) The Wolbachia genome of Brugia malayi: Endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3(4): e121.


'"/>

Source:PLoS Biology


Related biology news :

1. Anti-bacterial additive widespread in U.S. waterways
2. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
3. Scientists discover that host cell lipids facilitate bacterial movement
4. Protein prevents detrimental immune effects of bacterial sepsis
5. Researchers develop new method for facile identification of proteins in bacterial cells
6. A virus-like hitchhiker may trigger bacterial meningitis
7. Using the genomic shortcut to predict bacterial behavior
8. Eliminating bacterial infections out of thin air
9. Student scientists create living bacterial photographs
10. Researchers identify molecular anchor that allows bacterial invasion of central nervous system
11. Scientists determine structure of enzyme that disrupts bacterial virulence
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/11/2017)... GARDENS, Fla. , April 11, 2017 /PRNewswire/ ... management and secure authentication solutions, today announced that ... by Intelligence Advanced Research Projects Activity (IARPA) to ... IARPA,s Thor program. "Innovation has been ... and IARPA,s Thor program will allow us to ...
(Date:4/6/2017)... April 6, 2017 Forecasts by ... Document Readers, by End-Use (Transportation & Logistics, Government & ... Gas & Fossil Generation Facility, Nuclear Power), Industrial, Retail, ... Are you looking for a definitive report ... ...
(Date:4/4/2017)... NEW YORK , April 4, 2017   ... solutions, today announced that the United States Patent and ... The patent broadly covers the linking of an iris ... the same transaction) and represents the company,s 45 th ... our latest patent is very timely given the multi-modal ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... ... company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that ... Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los ...
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder and CEO of ... Rotary Club. The event entitled “Stem Cells and Their Regenerative Powers,” ... Dr. Harman, DVM, MPVM was joined by two human doctors: Peter B. Hanson, ...
(Date:10/10/2017)... Calif. , Oct. 10, 2017 SomaGenics ... from the NIH to develop RealSeq®-SC (Single Cell), expected ... for profiling small RNAs (including microRNAs) from single cells ... Program highlights the need to accelerate development of approaches ... "New techniques for measuring levels ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... 13 prestigious awards honoring scientists who have made outstanding contributions to ... symposium during Pittcon 2018, the world’s leading conference and exposition for laboratory science, ...
Breaking Biology Technology: