Navigation Links
Zebra fish fins help Oregon researchers gain insight into bone regeneration
Date:1/30/2014

EUGENE, Ore. -- University of Oregon biologists say they have opened the window on the natural process of bone regeneration in zebra fish, and that the insights they gained could be used to advance therapies for bone fractures and disease.

In a paper placed online in advance of print in the Feb. 13 issue of the journal Cell Reports, the UO team shows that two molecular pathways work in concert to allow adult zebra fish to perfectly replace bones lost upon fin amputation.

One pathway resets existing bone cells to a developmental stem cell-like state and then supports their growth to replace lost cells. The second directs the newly formed cells to turn back into functional, organized bone. Using genetic, cellular and molecular approaches, the authors detailed how the opposing pathways cross-communicate to keep the regenerative process in balance.

Unlike humans, some vertebrates, including zebra fish, have amazing innate abilities to regenerate lost appendages and organs, said co-author Kryn Stankunas, a professor of biology and member of the UO Institute of Molecular Biology. According to the authors, a mysterious process triggers residual cells to revert to a less developed state upon tissue damage, a process known as dedifferentation. The process is unique to animals like zebra fish and could be the key to their ability to perfectly restore lost tissue. Understanding the mechanisms could support the design of regenerative therapies that direct human cells to behave similarly.

"We focused on the bones of the zebra fish tail fin," Stankunas said, "and asked how amputation induces mature bone-lining cells to go backwards in their developmental age to what's called a progenitor state."

The researchers found that cell-to-cell signaling mediated by the Wnt pathway helps existing mature bone cells become progenitor cells after fin amputation. This starts the bone regeneration process. Local Wnt production at the tip of the regrowing fin then maintains a pool of dividing bone progenitor cells until the fin is fully replaced. The job of second pathway, BMP, is to convert the progenitor cells back into mature bone that forms the characteristic bony rays of a fish's fins. The authors show that both Wnt and BMP are needed to complete the process and describe how they engage in a cellular tug of war to balance their opposing roles.

Mammals, including humans, have these same pathways, and defects in them are associated with various human bone diseases, said the paper's lead author Scott Stewart, an associate member of the UO Institute of Molecular Biology.

Manipulating the two pathways could lead to new therapies, he said. "Striking that balance involves manipulating these pathways in the correct sequence, Wnt and then BMP," he said. "They have different roles and must act in a specific order."

The U.S. Food and Drug Administration allows for the use of recombinant BMP to encourage bone-growth following some surgical procedures. However, Stankunas said, the treatment is not always effective. The new findings, he said, suggests that too much BMP may upset the optimum balance of Wnt and BMP signaling, and that alternative approaches may be more successful.

"Our research suggests that enhancing human bone repair or even inducing bone regeneration isn't a ridiculous idea," he said. "As we discover the cellular and molecular roles of the signals in zebra fish and pinpoint the missing network connections in mammals, maybe we could coax human bones to repair themselves equally as well."


'/>"/>
Contact: Jim Barlow
jebarlow@uoregon.edu
541-346-3481
University of Oregon
Source:Eurekalert

Related biology news :

1. New methods improve quagga and zebra mussel identification
2. Mechanisms of wound healing are clarified in MBL zebrafish study
3. Zebrafish help identify mutant gene in rare muscle disease
4. Zebrafish study suggests that vitamin B2 (riboflavin) is an antidote to cyanide poisoning
5. Zebrafish may hold the answer to repairing damaged retinas and returning eyesight to people
6. Surprising teaching tool in K-12 science education -- Zebrafish research
7. Zebrafish study explains why the circadian rhythm affects your health
8. Zebra fish point the way towards new therapies for amyotrophic lateral sclerosis
9. Study of zebra fish mouth formation may speak to Fraser syndrome hearing loss
10. Zebrafish -- the stars of biomedicine
11. Zebrafish provide insights into causes and treatment of human diseases
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2017)... , Feb. 7, 2017 Report Highlights ... by 2021 from $8.3 billion in 2016 at a ... to 2021. Report Includes - An overview of ... market trends, with data from 2015 and 2016, and ... - Segmentation of the market on the basis of ...
(Date:2/7/2017)... , February 7, 2017 Ipsidy ... Solutions Corporation [OTC: IDGS], ("Ipsidy" or the "Company") a ... transaction processing services, is pleased to announce the following ... Effective January 31, 2017, Philip D. ... Directors, CEO and President.  An experienced payment industry professional ...
(Date:2/3/2017)... A new independent identity strategy consultancy firm announces its ... to fill a critical niche in technical and policy ... Mark Crego and Janice Kephart together ... that span federal governments, the 9/11 Commission, private industry, ... has a common theme born from a shared passion ...
Breaking Biology News(10 mins):
(Date:2/16/2017)... GREENWICH, Conn. , Feb. 16, ... focused on venture growth investments in biotechnology and ... Josh Richardson , M.D. to Managing Director. ... companies.  He is a board observer at InfaCare ... Longitude,s investments in Aimmune Therapeutics, Akebia Therapeutics, Cadence ...
(Date:2/16/2017)... , Feb. 16, 2017   Capricor Therapeutics, ... clinical-stage biotechnology company developing first-in-class biological therapies for ... it has elected to terminate its license agreement ... receptor agonists, including Cenderitide. "Our decision ... as we prioritize our efforts to advance our ...
(Date:2/16/2017)... DIEGO , Feb. 16, 2017  Dermata ... innovative products to treat a variety of dermatological ... million Series 1a financing and entered into a ... (SVB).  Dermata intends to use the capital for ... making major advancements in the treatment of serious ...
(Date:2/16/2017)... Feb. 16, 2017  Rhythm, a biopharmaceutical ... deficiencies that result in life-threatening metabolic disorders, ... million mezzanine round of financing with existing ... Capital, New Enterprise Associates, Pfizer Venture Investments, ... healthcare investment fund. Rhythm will use the ...
Breaking Biology Technology: