Navigation Links
What bacteria don't know can hurt them
Date:11/17/2011

Many infections, even those caused by antibiotic-sensitive bacteria, resist treatment. This paradox has vexed physicians for decades, and makes some infections impossible to cure.

A key cause of this resistance is that bacteria become starved for nutrients during infection. Starved bacteria resist killing by nearly every type of antibiotic, even ones they have never been exposed to before.

What produces starvation-induced antibiotic resistance, and how can it be overcome? In a paper appearing this week in Science, researchers report some surprising answers.

"Bacteria become starved when they exhaust nutrient supplies in the body, or if they live clustered together in groups know as biofilms," said the lead author of the paper, Dr. Dao Nguyen, an assistant professor of medicine at McGill University.

Biofilms are clusters of bacteria encased in a slimy coating, and can be found both in the natural environment as well as in human tissues where they cause disease. For example, biofilm bacteria grow in the scabs of chronic wounds, and the lungs of patients with cystic fibrosis. Bacteria in biofilms tolerate high levels of antibiotics without being killed.

"A chief cause of the resistance of biofilms is that bacteria on the outside of the clusters have the first shot at the nutrients that diffuse in," said Dr. Pradeep Singh, associate professor of medicine and microbiology at the University of Washington in Seattle, the senior author of the study. "This produces starvation of the bacteria inside clusters, and severe resistance to killing."

Starvation was previously thought to produce resistance because most antibiotics target cellular functions needed for growth. When starved cells stop growing, these targets are no longer active. This effect could reduce the effectiveness of many drugs.

"While this idea is appealing, it presents a major dilemma," Nguyen noted. "Sensitizing starved bacteria to antibiotics could require stimulating their growth, and this could be dangerous during human infections."

Nguyen and Singh explored an alternative mechanism.

Microbiologists have long known that when bacteria sense that their nutrient supply is running low, they issue a chemical alarm signal. The alarm tells the bacteria to adjust their metabolism to prepare for starvation. Could this alarm also turn on functions that produce antibiotic resistance?

To test this idea, the team engineered bacteria in which the starvation alarm was inactivated, and then measured antibiotic resistance in experimental conditions in which bacteria were starved. To their amazement, bacteria unable to sense starvation were thousands of times more sensitive to killing than those that could, even though starvation arrested growth and the activity of antibiotic targets.

"That experiment was a turning point," Singh said. "It told us that the resistance of starved bacteria was an active response that could be blocked. It also indicated that starvation-induced protection only occurred if bacteria were aware that nutrients were running low."

With the exciting result in hand, the researchers turned to two key questions. First does the starvation alarm produce resistance during actual infections? To test this the team examined naturally starved bacteria, biofilms, isolates taken from patients, and bacterial infections in mice. Sure enough, in all cases the bacteria unable to sense starvation were far easier to kill.

The second question was about the mechanism of the effect. How does starvation sensing produce such profound antibiotic resistance?

Again, the results were surprising.

Instead of well-described resistance mechanisms, like pumps that expel antibiotics from bacterial cells, the researchers found that the bacteria's protective mechanism defended them against toxic forms of oxygen, called radicals. This mechanism jives with new findings showing that antibiotics kill by generating these toxic radicals.

The findings suggest new approaches to improve treatment for a wide range of infections.

"Discovering new antibiotics has been challenging," Nguyen said. "One way to improve infection treatment is to make the drugs we already have work better. Our experiments suggest that antibiotic efficacy could be increased by disrupting key bacterial functions that have no obvious connection to antibiotic activity."

The work also highlights the critical advantage of being able to sense environmental conditions, even for single-celled organisms like bacteria. Cells unaware of their starvation were not protected, even though they ran out of nutrients and stopped growth. This proves again that, even for bacteria, "what you don't know can hurt you."


'/>"/>

Contact: Leila Gray
leilag@u.washington.edu
206-685-0381
University of Washington
Source:Eurekalert  

Related biology news :

1. Disinfectants can make bacteria resistant to treatment
2. H. Pylori bacteria may help prevent some esophageal cancers
3. Scientists discover bacteria that can cause bone infections
4. Waste from gut bacteria helps host control weight, UT Southwestern researchers report
5. Gene against bacterial attack unravelled
6. Predatory bacterial swarm uses rippling motion to reach prey
7. Bacteria manage perfume oil production from grass
8. Nature study demonstrates that bacterial clotting depends on clustering
9. Battling bacteria in the blood: Researchers tackle deadly infections
10. Shifts in soil bacterial populations linked to wetland restoration success
11. New bacteria discovered in raw milk
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
What bacteria don't know can hurt them
(Date:6/3/2016)... 2016 Das DOTM ... Nepal hat ein 44 Millionen ... Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an ... und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale ... teilgenommen, aber Decatur wurde als konformste und ...
(Date:5/24/2016)... Calif. , May 24, 2016 Ampronix facilitates superior patient care by ... LMD3251MT  3D medical LCD display is the latest premium product recently added to the ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016  Global demand for enzymes is ... 2020 to $7.2 billion.  This market includes enzymes ... products, biofuel production, animal feed, and other markets) ... biocatalysts). Food and beverages will remain the largest ... consumption of products containing enzymes in developing regions.  ...
(Date:6/27/2016)...  Sequenom, Inc. (NASDAQ: SQNM ), a ... the development of innovative products and services, announced today ... States denied its petition to review decisions ... U.S. Patent No. 6,258,540 (",540 Patent") are not patent ... Supreme Court,s Mayo Collaborative Services v. Prometheus Laboratories decision.  ...
(Date:6/27/2016)... ... 27, 2016 , ... Parallel 6 , the leading software as a ... Reach Virtual Patient Encounter CONSULT module which enables both audio and video telemedicine ... team. , Using the CONSULT module, patients and physicians can schedule a face to ...
(Date:6/27/2016)... , ... June 27, 2016 , ... ... for Amgen, will join the faculty of the University of North Carolina ... professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the ...
Breaking Biology Technology: