Navigation Links
Virtual finger enables scientists to navigate and analyze complex 3D images
Date:7/11/2014

SEATTLE, WASH. July 11, 2014 Researchers have pioneered a revolutionary new way to digitally navigate three-dimensional images. The new technology, called Virtual Finger, allows scientists to move through digital images of small structures like neurons and synapses using the flat surface of their computer screens. Virtual Finger's unique technology makes 3D imaging studies orders of magnitude more efficient, saving time, money and resources at an unprecedented level across many areas of experimental biology. The software and its applications are profiled in this week's issue of the journal Nature Communications.

Most other image analysis software works by dividing a three-dimensional image into a series of thin slices, each of which can be viewed like a flat image on a computer screen. To study three-dimensional structures, scientists sift through the slices one at a time: a technique that is increasingly challenging with the advent of big data. "Looking through 3D image data one flat slice at a time is simply not efficient, especially when we are dealing with terabytes of data," explains Hanchuan Peng, Associate Investigator at the Allen Institute for Brain Science. "This is similar to looking through a glass window and seeing objects outside, but not being able to manipulate them because of the physical barrier."

In sharp contrast, Virtual Finger allows scientists to digitally reach into three-dimensional images of small objects like single cells to access the information they need much more quickly and intuitively. "When you move your cursor along the flat screen of your computer, our software recognizes whether you are pointing to an object that is near, far, or somewhere in between, and allows you to analyze it in depth without having to sift through many two-dimensional images to reach it," explains Peng.

Scientists at the Allen Institute are already using Virtual Finger to improve their detection of spikes from individual cells, and to better model the morphological structures of neurons. But Virtual Finger promises to be a game-changer for many biological experiments and methods of data analysis, even beyond neuroscience. In their Nature Communications article, the collaborative group of scientists describes how the technology has already been applied to perform three-dimensional microsurgery in order to knock out single cells, study the developing lung, and create a map of all the neural connections in the fly brain.

"Using Virtual Finger could make data collection and analysis ten to 100 times faster, depending on the experiment," says Peng. "The software allows us to navigate large amounts of biological data in the same way that Google Earth allows you to navigate the world. It truly is a revolutionary technology for many different applications within biological science," says Peng.

Hanchuan Peng began developing Virtual Finger while at the Howard Hughes Medical Institute's Janelia Research Campus and continued development at the Allen Institute for Brain Science.


'/>"/>

Contact: Steven Cooper
steven.cooper@edelman.com
415-486-3264
Edelman Public Relations
Source:Eurekalert

Related biology news :

1. Virtual Physiological Human Conference 2014
2. Virtual patients, medical records and sleep queries may help reduce suicide
3. Virtual lab for nuclear waste repository research
4. Virtual bees help to unravel complex causes of colony decline
5. Can a virtual brain replace lab rats?
6. Researchers hit virtual heads to make safer games
7. Virtual skin model reveals secrets of skin aging
8. Amazon River exhales virtually all carbon taken up by rain forest
9. Virtual patient advocate delivers preconception care to improve pregnancy outcomes
10. Virtual, squishy creatures evolve to run using evolutionary algorithms
11. Virtual vehicle vibrations
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... April 27, 2016 Research ... Multi-modal Biometrics Market 2016-2020"  report to their offering.  ... The analysts forecast the global multimodal ... 15.49% during the period 2016-2020.  Multimodal ... sectors such as the healthcare, BFSI, transportation, automotive, ...
(Date:4/14/2016)... , April 14, 2016 ... Malware Detection, today announced the appointment of Eyal ... new role. Goldwerger,s leadership appointment comes at ... heels of the deployment of its platform at several ... biometric technology, which discerns unique cognitive and physiological factors, ...
(Date:3/29/2016)... RATON, Florida , March 29, 2016 ... or the "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are ... DNA in ink used in a variety of writing ... theft. Buyers of originally created collectibles from athletes on ... through forensic analysis of the DNA. ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... , ... April 29, 2016 , ... Intelligent Implant Systems ... the FDA via 510(k) for sale in the United States. These components expand ... thoraco-lumbar fusions. With one-level sales beginning in October of 2015, the company has ...
(Date:4/28/2016)... ... 28, 2016 , ... Connecticut Innovations (CI), the ... announced the launch of VentureClash , a $5 million global investment challenge ... looks to attract the best early-stage companies here in Connecticut, around the country ...
(Date:4/27/2016)... ... April 27, 2016 , ... Cambridge Semantics, ... web technology, today announced that it has been named to The Silicon Review’s “20 ... services and other markets, Cambridge Semantics serves the needs of end users facing some ...
(Date:4/27/2016)... , April 27, 2016 ... NSK) (OTCPink: NSKQB) ( Frankfurt : ... ihre Pressemitteilung vom 13. August 2015 die Genehmigung ... Finanzen um zusätzliche 200.000.000 Einheiten auf 400.000.000 Einheiten ... zu bringen. Davon wurden 157.900.000 Einheiten mit dem ...
Breaking Biology Technology: