Navigation Links
Vanderbilt-led team to develop 'microbrain' to improve drug testing

Take a millionth of a human brain and squeeze it into a special chamber the size of a mustard seed. Link it to a second chamber filled with cerebral spinal fluid and thread both of them with artificial blood vessels in order to create a microenvironment that makes the neurons and other brain cells behave as if they were in a living brain. Then surround the chambers with a battery of sensors that monitor how the cells respond when exposed to minute quantities of dietary toxins, disease organisms or new drugs under development.

Creating such a "microbrain bioreactor" is the challenge of a new $2.1 million research grant awarded to an interdisciplinary team of researchers from Vanderbilt University, Vanderbilt University Medical Center, the Cleveland Clinic and Meharry Medical College. The award is one of 17 that are being issued by the National Center for Advancing Translational Sciences at the National Institutes of Health as part of a $70 million "Tissue Chip for Drug Testing" program. The five-year program is a cooperative effort on the part of NIH, the Defense Advanced Research Projects Agency and the FDA.

The reason for microfabricating organ simulators containing small populations of human cells generally known as organ-on-a-chip technology is to bridge the formidable gaps that exist between the tools that researchers currently use to develop new drugs cell cultures and animal and human testing. These gaps not only add substantially to the difficulty and expense of developing new drugs but also contribute to the large number of experimental drugs that aren't effective or have unacceptable side effects when they are finally tested on people.

The brain is a particularly difficult target for drug development because it is surrounded by three barriers that protect it from molecular or cellular intruders. The most formidable of these is the blood-brain barrier (BBB). It surrounds the blood vessels that service the brain and allows the passage of compounds that the brain needs while simultaneously blocking the passage of other types of molecules, both foreign and domestic. The two other barriers protect the neurons from contaminants in the cerebral spinal fluid and protect the cerebral spinal fluid from contaminants in the blood. Not only do these barriers block potentially harmful molecules, neuroscientists have also discovered that they occasionally alter the chemistry of some of the compounds that they let through.

"Given the differences in cellular biology in the brains of rodents and humans, development of a brain model that contains neurons and all three barriers between blood, brain and cerebral spinal fluid, using entirely human cells, will represent a fundamental advance in and of itself," said John Wikswo, the Gordon A. Cain University Professor and director of the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE), who is orchestrating the multidisciplinary effort.

Wikswo and his collaborators argue that this new type of brain model should provide new insights into how the brain receives, modifies and is affected by drugs and disease agents. By replicating the forms of chemical communication and molecular trafficking that take place in the human brain, the device will allow them to test the effectiveness of various drug and nutritional therapies designed to prevent both acute injuries like strokes and chronic diseases like obesity and epilepsy, as well as uncovering the potential adverse effects of experimental drugs.

The basic microbrain bioreactor involves the integration of several technologies that have been developed and tested independently:

  • Damir Janigro, director of the Cerebrovascular Research Center at the Cleveland Clinic (CC) and his coworkers have developed a hollow-fiber model of the BBB that uses two of the three cell types that make up the human barrier. Tests of this model have shown that it accurately reproduces a number of the features of the real BBB. Janigro's team will adapt his model so that it will work with the new system, allowing for permeability and neurotoxicity studies of drugs. "There is huge need for predictive models of drug delivery to the brain. Neurological diseases are growing in our ageing population and drug development for Alzheimer's disease or other neurodegenerative diseases is of paramount importance for public health. The approach made possible by this multicenter grant will allow for a more rational drug design," he said.

  • Donald J. Alcendor, associate professor of microbiology and immunology at Meharry Medical College, will work with the CC and Vanderbilt teams to add the third cell type in the human BBB, called pericytes, to the microbrain bioreactor system, along with other cellular components that will allow the monitoring of molecular traffic for therapeutic analysis and cellular responses of the diseased brain. Alcendor discovered that Cytomegalovirus infection, which is the leading infectious cause of congenital disease in babies, spreads into the brain by infecting the pericytes. "The microbrain bioreactor should allow us to better understand how cell systems in the blood-brain barrier support and respond to Cytomegalovirus infection," he said.

  • A team headed by Donna Webb, assistant professor of biological sciences and Deyu Li, associate professor of mechanical engineering, will incorporate special microfluidic valves that they developed to study the interactions between neurons and the glial cells that accompany them in the brain. These simple valves allow the scientists to maintain different types of cells in individual chambers linked by microchannels that can be easily opened and closed. This capability allowed Webb's team to show that fluid from the glial cells is critical for neuron survival. "The new platform, with its unprecedented complexity, will greatly advance the lab-on-a-chip field," Li said.

  • The VIIBRE group has extensive experience instrumenting extremely small bioreactors. Associate Professor of Chemistry David Cliffel and his group have been building miniature electrochemical sensors that measure cellular metabolism by tracking the consumption of glucose and oxygen and the production of lactate and changes in acidity. Assistant Professor of Chemistry John McLean's group have been leading the effort to connect these small devices to sophisticated mass spectrometers that can identify in real time the presence of thousands of different proteins and other molecules that the cells produce. "It's an exciting challenge to apply real-time analytics to decipher the molecular communication that takes place in the brain," McLean said.

Once the microbrain bioreactor has been developed and tested, a team headed by Scott Daniels, assistant professor of pharmacology and director of drug metabolism and pharmacokinetics at the Vanderbilt Center for Neurosciences Drug Discovery, will collaborate with the Cleveland Clinic Foundation group to validate the chip technology by testing it with a number of clinically approved and experimental compounds that vary in their ability to penetrate the central nervous system. Daniels noted that "the brain-on-a-chip technology could enable the accurate prediction of human brain penetration by small molecule therapeutics and therefore bridge a critical translational gap in the drug discovery arena."

Another group, headed by Associate Professor of Medicine Kevin Niswender, will be applying the new device to study the biology of stroke and the role that the brain plays in obesity. The system will allow his group to ask fundamental questions about how dietary macronutrients and inflammatory signals influence the various components present in the brain. Assistant Professor of Molecular Physiology and Biophysics Kate Ellacot will employ the system to understand how glial cells interact with neurons in the context of inflammation in obesity. In addition, the Cleveland Clinic has a large collection of samples from patients with these and other conditions. They will put cells from selected patients in the bioreactors and quantify how they respond to different treatments. "The ability to apply these precious samples entrusted to us by patients to a platform where we can literally measure hundreds of parameters is a dream come true," said team member BethAnn McLaughlin, assistant professor of neurology and member of the Vanderbilt Kennedy Center. "We have enormous challenges in developing therapeutics to protect the brain from injury and this is a profound unmet need. Not a single drug has passed FDA approval to protect the brain from stroke, and we only have one that breaks up clots. We need to do better."


Contact: David F. Salisbury
Vanderbilt University

Related biology news :

1. Diabetes Research Institute develops oxygen-generating biomaterial
2. Artificial womb unlocks secrets of early embryo development
3. REST is crucial for the timing of brain development
4. Embryonic development protein active in cancer growth
5. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
6. Mini-CT scanner developed as a teaching tool
7. Genetic research develops tools for studying diseases, improving regenerative treatment
8. Oceanographers develop method for measuring the pace of life in deep sediments
9. Scientists win $2 million to study new pathway in development and maintenance of lymphoma
10. Stomata development in plants unraveled -- a valuable discovery for environmental research
11. Promising developments in early diagnosis and treatment of mesothelioma
Post Your Comments:
Related Image:
Vanderbilt-led team to develop 'microbrain' to improve drug testing
(Date:5/28/2020)... ... May 28, 2020 , ... ... adjunct liquefaction: AMYLEX® 6T. The innovative enzyme enables numerous business gains for ... with locally-sourced raw materials, improve productivity, maximize yield, ensure consistent quality and ...
(Date:5/21/2020)... ... May 21, 2020 , ... ... specializing in background and medical screening, announces the launch of a testing ... their workforce safe. The new service is provided by ClearStar’s Medical Information ...
(Date:5/21/2020)... ... May 21, 2020 , ... ... North Shore and Greater Boston area, is pleased to announce a partnership with ... the busiest group practices in the area, Agility Orthopedics is focused on speeding ...
Breaking Biology News(10 mins):
(Date:5/21/2020)... ... ... Eaton Square is pleased to announce its growth on the East Coast of the ... and M&A advisory firm. , This is an important step for Eaton Square as ... innovators with capital and investors. , Popper and Company, founded in 2003 by Caroline ...
(Date:5/15/2020)... ... May 14, 2020 , ... Children with defective ... surgeries before becoming adults. The reason: there are no heart valve prosthetics ... need, the Department of Defense has awarded Draper, Boston Children’s Hospital and Seattle ...
(Date:5/14/2020)... , ... May 12, 2020 , ... ... JCS as the new distribution partner for all personal care ingredients in Russia ... portfolio and DuPont preservative portfolio for personal care. , The GENENCARE®OSMS ...
(Date:5/14/2020)... TORONTO (PRWEB) , ... May 13, 2020 , ... ... simple reporter assays or phenotypic readouts, providing little or no information on the ... enable a more comprehensive characterization of compounds by measuring the activity of molecular ...
Breaking Biology Technology: