Navigation Links
University of Illinois researchers develop AFM-IR for nanometer scale chemical identification
Date:3/8/2013

For more than 20 years, researchers have been using atomic force microscopy (AFM) to measure and characterize materials at the nanometer scale. However AFM-based measurements of chemistry and chemical properties of materials were generally not possible, until now.

Researchers at the University of Illinois at Urbana-Champaign report that they have measured the chemical properties of polymer nanostructures as small as 15 nm, using a novel technique called atomic force microscope infrared spectroscopy (AFM-IR). The article, "Atomic force microscope infrared spectroscopy on 15nm scale polymer nanostructures," appears in the Review of Scientific Instruments 84, published by the American Institute of Physics.

"AFM-IR is a new technique for measuring infrared absorption at the nanometer scale," explained William P. King, an Abel Bliss Professor in the Department of Mechanical Science and Engineering at Illinois. "The first AFM-based measurements could measure the size and shape of nanometer-scale structures. Over the years, researchers improved AFM to measure mechanical properties and electrical properties on the nanometer scale. However chemical measurements have lagged far behind, and closing this gap is a key motivation for our research.

"These infrared absorption properties provide information about chemical bonding in a material sample, and these infrared absorption properties can be used to identify the material," King added. "The polymer nanostructures are about an order of magnitude smaller than those measured previously."

The research is enabled by a new way to analyze the nanometer-scale dynamics within the AFM-IR system. The researchers analyzed the AFM-IR dynamics using a wavelet transform, which organizes the AFM-IR signals that vary in both time and in frequency. By separating the time and frequency components, the researchers were able to improve the signal to noise within AFM-IR and to thereby measure significantly smaller samples than previously possible.

The ability to measure the chemical composition of polymer nanostructures is important for a variety of applications, including semiconductors, composite materials, and medical diagnostics.


'/>"/>

Contact: William P. King
wpk@illinois.edu
217-244-3864
University of Illinois College of Engineering
Source:Eurekalert  

Related biology news :

1. University of Alberta researchers bake a better loaf of bread
2. UC Berkeley, UCSF and Stanford join forces to help commercialize university innovations
3. University of Colorado and Orphan Technologies sign agreement
4. Brown University researchers build robotic bat wing
5. Wayne State University researchers techniques enable more, faster testing of biological liquids
6. University of Arizona Engineering College pursues water technology innovation cluster
7. Brown University scientists to discuss resilience of coastal communities at AAAS
8. New Research Conducted by University Cancer Centers Links BP Refinery Incident to Increase Occurrence of Cancer in Texas City
9. University of Florida reports 2012 US shark attacks highest since 2000
10. Rice University lab show how blood vessels regroup after stroke
11. Sustaining Coastal Cities Conference at Northeastern University
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
University of Illinois researchers develop AFM-IR for nanometer scale chemical identification
(Date:11/29/2016)... Nearly one billion matches per second with DERMALOG,s high-speed AFIS    ... ... DERMALOG is Germany's largest Multi-Biometric supplier: The company's Fingerprint ... ... Multi-Biometric supplier: The company's Fingerprint Identification System is part of an efficient ...
(Date:11/21/2016)... VILNIUS, Lithuania , Nov. 21, 2016 /PRNewswire/ ... identification and object recognition technologies, today announced that ... for smart cards was submitted for the ... and successfully passed all the mandatory steps of ... III evaluation is a continuing test of fingerprint ...
(Date:11/15/2016)... , Nov. 15, 2016  Synthetic Biologics, Inc. ... therapeutics focused on the gut microbiome, today announced ... 25,000,000 shares of its common stock and warrants ... at a price to the public of $1.00 ... Synthetic Biologics from the offering, excluding the proceeds, ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... , ... December 08, 2016 , ... ... FrontPanel SDK that provide essential device-to-computer interconnect using USB or PCI Express, announced ... FrontPanel support. The FOMD-ACV-A4 is a small, thin, SODIMM-style module that fits a ...
(Date:12/8/2016)... , ... December 08, 2016 ... ... the commercial launch of flexible packaging for their exceptionally efficient human mesenchymal ... system extends RoosterBio’s portfolio of bioprocess media products engineered to radically streamline ...
(Date:12/8/2016)... Fla. , Dec. 8, 2016  HedgePath ... company that discovers, develops and plans to commercialize ... its shares of common stock were approved for ... will begin trading on the OTCQX, effective today, ... qualify for the OTCQX market, companies must meet ...
(Date:12/7/2016)... , ... December 07, 2016 , ... ... its phase I/II dose escalation and expansion clinical trial for its lead drug ... Austria. The purpose of the trial was to determine the safety, antitumor activity, ...
Breaking Biology Technology: