Navigation Links
UTSW study identifies potential therapeutic target for incurable, rare type of soft-tissue cancer
Date:12/26/2013

DALLAS Dec. 26, 2013 A deadly, rare type of soft-tissue cancer may be completely eradicated simply by inhibiting a key protein involved in its growth, UT Southwestern Medical Center researchers report.

In the study, published online today in Cell Reports, scientists found that inhibiting the action of a protein called BRD4 caused cancer cells to die in a mouse model of malignant peripheral nerve sheath tumors (MPNSTs).

"This study identifies a potential new therapeutic target to combat MPNST, an incurable type of cancer that is typically fatal," said Dr. Lu Le, Assistant Professor of Dermatology at UT Southwestern and senior author of the study. "The findings also provide important insight into what causes these tumors to develop."

MPNSTs are highly aggressive sarcomas that form around nerves. These tumors can develop sporadically, but about half of cases are in patients with a genetic disorder called neurofibromatosis type 1 (NF1) that affects 1 in 3,500 people. About 10 percent of NF1 patients will develop MPNST, which usually evolves from a benign but often large and disfiguring tumor called a plexiform neurofibroma.

Up to now, the preferred treatment for MPNST has been surgical removal, but that oftentimes is difficult or impossible due to the tumor's location around nerves. Radiation and chemotherapy are other options, but their effectiveness is limited. The five-year survival rate for MPNST patients is about 50 percent.

By studying changes in cells as they evolved into cancerous MPNSTs, researchers in Dr. Le's laboratory were able to determine that BRD4, a bromodomain protein that binds to DNA to regulate gene activation, is expressed at an unusually high level in MPNST cancer cells. This action caused another protein called BCL-2 to keep cancer cells from dying. Alternately, when researchers inhibited BRD4 either genetically in the mice or pharmacologically by administering a compound called JQ1, the tumors shrank.

"These treatments suppressed tumor growth and caused the cancer cells to undergo apoptosis, or cell death. This is why BRD4 inhibition is exquisitely effective against MPNSTs and may represent a paradigm shift in therapy for these patients," Dr. Le said.

The same class of drug used in the experiments is currently being evaluated in phase 1 and 2 trials for treatment of leukemia and a subtype of lung cancer. Meanwhile, UT Southwestern is working with a pharmaceutical company to develop a similar BRD4-inhibiting drug to launch a clinical trial for MPNST patients.

New drugs are desperately needed to treat MPNST and provide hope to NF1 patients at highest risk for this cancer, said Dr. Le, who also serves as Co-director of UT Southwestern's Comprehensive Neurofibromatosis Clinic. The clinic offers neurofibromatosis patients access to the latest clinical trials and treatments. Co-directed by Dr. Laura Klesse, Assistant Professor of Pediatrics, the clinic is part of the Harold C. Simmons Comprehensive Cancer Center and serves patients with all three types of hereditary neurofibromatosis, including the dominant NF1 type and rarer NF2 and Schwannomatosis forms.


'/>"/>

Contact: Debbie Bolles
debbie.bolles@utsouthwestern.edu
214-648-3404
UT Southwestern Medical Center
Source:Eurekalert  

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. Law that regulates shark fishery is too liberal: UBC study
3. New study will help protect vulnerable birds from impacts of climate change
4. Study jointly led by UCSB researcher supports theory of extraterrestrial impact
5. BYU study: Using a gun in bear encounters doesnt make you safer
6. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
7. Pycnogenol (French maritime pine bark extract) shown to improve menopause symptoms in new study
8. Crystal structure of archael chromatin clarified in new study
9. EU-funded study underlines importance of Congo Basin for global climate and biodiversity
10. University of Houston study shows BP oil spill hurt marshes, but recovery possible
11. Study demonstrates cells can acquire new functions through transcriptional regulatory network
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UTSW study identifies potential therapeutic target  for incurable, rare type of soft-tissue cancer
(Date:2/8/2017)... -- Report Highlights ... The global synthetic-biology market reached nearly $3.9 billion ... at a compound annual growth rate (CAGR) of 24.0% through ... markets for synthetic biology. - Analyses of global market trends, ... compound annual growth rates (CAGRs) through 2021. - Coverage of ...
(Date:2/7/2017)... , Feb. 7, 2017   MedNet Solutions , ... entire spectrum of clinical research, is pleased to announce ... , its innovative, highly flexible and award winning eClinical ... customers. iMedNet is a proven Software-as-a-Service (SaaS) ... Data Capture (EDC), but also delivers an entire suite ...
(Date:2/6/2017)... According to Acuity Market Intelligence, ongoing ... to continue to embrace biometric and digital identification ... Border Control (ABC) eGates and 1436 Automated Passport ... 163 ports of entry across the globe. Deployments ... combined CAGR of 37%. APC Kiosks reached 75% ...
Breaking Biology News(10 mins):
(Date:2/22/2017)... ... 22, 2017 , ... Kernel , a human intelligence ... (KRS) clinical development program. KRS is a neurotechnology spin-out from the Massachusetts ... applications. The terms of the transaction were not disclosed. , It addition ...
(Date:2/22/2017)... 22, 2017 Scientists propose in Nature ... damage in Gaucher and maybe other lysosomal storage diseases ... costs than current therapies. An international research ... , which also included investigators from the University of ... data Feb. 22. The study was conducted in mouse ...
(Date:2/22/2017)... ... February 22, 2017 , ... LabRoots , the leading ... the world, is pleased to announce the 2nd annual Precision Medicine Virtual Conference. ... online-only conference focused on the development and advancements in precision medicine. , Precision ...
(Date:2/22/2017)... 22, 2017 Origin (Origin Agritech, LLC, a subsidiary of ... provider, and Arcadia (Arcadia Biosciences, Inc., NASDAQ: ... commercializes agricultural productivity traits and nutritional products, today announced their collaboration ... developed in China to the ... ...
Breaking Biology Technology: