Navigation Links
UH biomedical engineer works to make blood transfusions safer
Date:4/23/2014

HOUSTON, April 23, 2014 A biomedical engineer at the University of Houston (UH) is working to develop highly innovative technology to make blood transfusions safer. His work is supported by a $1.8 million grant from the National Institutes of Health (NIH).

Blood transfusions save millions of lives every year. They are one of modern medicine's absolute necessities. Without them, for instance, routine surgeries would become life threatening. This doesn't mean transfusions are perfect, however. There's strong evidence that transfusions of red blood cells stored in a refrigerator for prolonged periods of time can be dangerous or even deadly for some patients.

This is because patients get more than just healthy, well-preserved red blood cells during a transfusion. They also get a number of potentially harmful materials. Materials beyond the needed red blood cells include the anticoagulant-preservative solution that keeps the blood cells alive during storage, as well as cells that have been irreparably damaged by processing the blood after donation and during storage. Additional materials include the remnants of burst cells, including free hemoglobin and microparticles that can contribute to inflammation and the formation of blood clots, as well as the byproducts of cellular metabolism, which is essentially cellular waste. The longer blood is in storage, the more these potentially harmful materials build up.

"Therapeutically, there's absolutely no reason to transfer any of this into the patient," said Sergey Shevkoplyas, associate professor of biomedical engineering with UH's Cullen College of Engineering. "The only thing you need to transfuse into the patient is well-preserved red blood cells. There's no point to giving you these other potentially toxic materials."

Shevkoplyas is working under an NIH Director's Transformative Research Award to develop a simple device to separate healthy, well-preserved red blood cells from all the other material in the blood bag just before transfusion. Such grants support high-risk/high-reward projects with potentially transformative impacts.

The system Shevkoplyas is developing will consist of two tubes that feed into a plastic device just a few inches in size. One tube will send blood into the device, while another will send saline solution. In the first step, the saline will wash harmful particles and the storage solution off the healthy red blood cells. Next, the entire mixture will be sent through an array of precisely designed microfluidic channels, where the shape, size and flexibility of healthy red blood cells will allow them to be separated from the particles, damaged cells and storage solution. At that point, the healthy red blood cells, along with saline acting as a transport medium, can be transfused safely into the patient.

Shevkoplyas emphasizes this will be no easy task, since microfluidic research usually involves fluids flowing through channels measuring less than a millimeter, with devices that can handle just a few drops per hour. With its series of interconnected channels, Shevkoplyas' device aims to scale these microfluidic interactions up a thousandfold.

"That's the big challenge," Shevkoplyas said. "Adapting our understanding of microfluidics to a high-throughput device is not very simple, though we do have some good data to show we can do it."

While Shevkoplyas' system faces significant scientific and engineering hurdles, one of its biggest advantages is just how practical it is. The materials he will use to build the device, like the saline solution, are already approved by the U.S. Food and Drug Administration. This significantly reduces the burden for regulatory approvals, which should help keep the cost of the system at around $50 and allow it to come to market sooner.

Additionally, health care systems worldwide already have invested billions of dollars into existing blood storage and transfusion practices. Using the device Shevkoplyas plans to create won't require any significant changes to these practices. Instead, the small, disposable device would be placed between the blood bag and the patient during transfusion, completely at the discretion of the patient's care team.

Together, these features make it much more likely that Shevkoplyas' device will move from the lab to clinical use, where it can have a positive impact on patient health.

"We're trying to fit as much of this technology as we can into the existing paradigm of transfusion. We want to empower medical professionals at the scene to make the decision about using this system," Shevkoplyas said. "You cannot save people's lives without blood transfusions. We're just trying to make this life-saving procedure as safe as possible."


'/>"/>

Contact: Lisa Merkl
lkmerkl@uh.edu
713-743-8192
University of Houston
Source:Eurekalert  

Related biology news :

1. Biomedical bleeding affects horseshoe crab behavior
2. Johns Hopkins researcher awarded prestigious Wiley Prize in Biomedical Sciences
3. LSU receives $2 million from NIH for biomedical sciences training for underrepresented students
4. UCSB biomedical scientist discovers a new method to increase survival in sepsis
5. Biomedical Advanced Research and Development Authority (BARDA) Exercises Option with Pfenex Inc. To Extend Contract and Increase Funding for the Development of a Recombinant Protective Antigen (rPA) Based Anthrax Vaccine
6. NIH announces awards to strengthen the biomedical research workforce
7. MARC travel awards announced for the 2013 Biomedical Engineering Society annual meeting
8. TGen President Dr. Jeffrey Trent speaks at Brookings Institution biomedical conference
9. Fluke Biomedical launches portable, feature-rich ProSim 3 and 2 Vital Signs Simulators
10. Biomedical research revealing secrets of cell behavior
11. New FASEB analysis documents impact of budget cuts on biomedical research
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UH biomedical engineer works to make blood transfusions safer
(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
(Date:4/14/2016)... TEL AVIV, Israel , April 14, 2016 /PRNewswire/ ... in Behavioral Authentication and Malware Detection, today announced the ... has already assumed the new role. Goldwerger,s ... for BioCatch, on the heels of the deployment of ... In addition, BioCatch,s behavioral biometric technology, which discerns unique ...
(Date:3/29/2016)... , March 29, 2016 ... "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased to ... ink used in a variety of writing instruments, ensuring ... of originally created collectibles from athletes on LegacyXChange will ... analysis of the DNA. Bill Bollander ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ON , June 27, 2016 /PRNewswire/ - BIOREM Inc. ... has been advised by its major shareholders, Clean Technology ... United States based venture capital ... shares of Biorem (on a fully diluted, as converted ... the disposition of their entire equity holdings in Biorem ...
(Date:6/27/2016)... ... June 27, 2016 , ... Newly created 4Sight Medical ... to the healthcare market. The company's primary focus is on new product introductions, ... strategies that are necessary to help companies efficiently bring their products to market. ...
(Date:6/24/2016)... 2016  Regular discussions on a range of subjects including ... two entities said Poloz. Speaking at a lecture ... , he pointed to the country,s inflation target, which is ... "In certain areas there ... common economic goals, why not sit down and address strategy ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a ... eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research ... by providing practical tips, tools, and strategies for clinical researchers. , “The landscape ...
Breaking Biology Technology: