Navigation Links
UCSF team develops 'logic gates' to program bacteria as computers
Date:12/8/2010

A team of UCSF researchers has engineered E. coli with the key molecular circuitry that will enable genetic engineers to program cells to communicate and perform computations.

The work builds into cells the same logic gates found in electronic computers and creates a method to create circuits by "rewiring" communications between cells. This system can be harnessed to turn cells into miniature computers, according to findings that will be reported in an upcoming issue of Nature and appear today in the advanced online edition at www.nature.com.

That, in turn, will enable cells to be programmed with more intricate functions for a variety of purposes, including agriculture and the production of pharmaceuticals, materials and industrial chemicals, according to Christopher A. Voigt, PhD, a synthetic biologist and associate professor in the UCSF School of Pharmacy's Department of Pharmaceutical Chemistry who is senior author of the paper.

The most common electronic computers are digital, he explained; that is, they apply logic operations to streams of 1's and 0's to produce more complex functions, ultimately producing the software with which most people are familiar. These logic operations are the basis for cellular computation, as well.

"We think of electronic currents as doing computation, but any substrate can act like a computer, including gears, pipes of water, and cells," Voigt said. "Here, we've taken a colony of bacteria that are receiving two chemical signals from their neighbors, and have created the same logic gates that form the basis of silicon computing."

Applying this to biology will enable researchers to move beyond trying to understand how the myriad parts of cells work at the molecular level, to actually use those cells to perform targeted functions, according to Mary Anne Koda-Kimble, dean of the UCSF School of Pharmacy.

"This field will be transformative in how we harness biology for biomedical advances," said Koda-Kimble, who championed Voigt's recruitment to lead this field at UCSF in 2003. "It's an amazing and exciting relationship to watch cellular systems and synthetic biology unfold before our eyes."

The Nature paper describes how the Voigt team built simple logic gates out of genes and inserted them into separate E. coli strains. The gate controls the release and sensing of a chemical signal, which allows the gates to be connected among bacteria much the way electrical gates would be on a circuit board.

"The purpose of programming cells is not to have them overtake electronic computers," explained Voigt, whom Scientist magazine named a "scientist to watch" in 2007 and whose work is included among the Scientist's Top 10 Innovations of 2009. "Rather, it is to be able to access all of the things that biology can do in a reliable, programmable way."

The research already has formed the basis of an industry partnership with Life Technologies, in Carlsbad, Cal., in which the genetic circuits and design algorithms developed at UCSF will be integrated into a professional software package as a tool for genetic engineers, much as computer-aided design is used in architecture and the development of advanced computer chips.

The automation of these complex operations and design choices will advance basic and applied research in synthetic biology. In the future, Voigt said the goal is to be able to program cells using a formal language that is similar to the programming languages currently used to write computer code.


'/>"/>

Contact: Kristen Bole
kristen.bole@ucsf.edu
415-502-6397
University of California - San Francisco
Source:Eurekalert  

Related biology news :

1. Iowa State, Ames Lab researcher develops new way to study single biological molecules
2. MU scientist develops salmonella test that makes food safer, reduce recalls
3. IVCC develops new public health insecticides
4. NC State develops more precise genetic off switches
5. Yale develops new animal model for hemophilia A
6. Research develops simple recipe for fungus-free horseradish
7. CCNY-led team develops non-toxic oil recovery agent
8. Harvards Wyss Institute develops technology to produce sugar from photosynthetic bacteria
9. ISU researcher develops green, bio-based process for producing fuel additive
10. Military develops multi-purpose green decontaminants for terrorist attack sites
11. CSIRO develops highest-yielding salt-tolerant wheat
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UCSF team develops 'logic gates' to program bacteria as computers
(Date:3/9/2016)... , March 9, 2016 This BCC ... future states of the RNA Sequencing (RNA Seq) market ... such as instruments, tools and reagents, data analysis, and ... various segments of the RNA-Sequencing market such as RNA-Sequencing ... Identify the main factors affecting each segment and forecast ...
(Date:3/8/2016)... 8, 2016   Valencell , the leading ... it has secured $11M in Series D financing. ... new venture fund being launched by UAE-based financial ... existing investors TDF Ventures and WSJ Joshua Fund. ... its triple-digit growth and accelerate its pioneering innovation ...
(Date:3/3/2016)... NOTTINGHAM, England and DE SOTO, ... , U.S.-based Stroke Detection Plus® to offer Oncimmune,s ... the risk assessment and early detection of lung cancer ... include large employers, unions and individuals. --> ... employers, unions and individuals. --> Oncimmune, a ...
Breaking Biology News(10 mins):
(Date:4/28/2016)... York, NY (PRWEB) , ... April 28, 2016 ... ... QuickSTAT has made significant investments in recruiting top industry experts, and expanding its ... Platform, which provides industry-leading tools for clients to manage their clinical trial projects. ...
(Date:4/27/2016)... ... ... Cambridge Semantics, the leading provider of Smart Data analytic and ... named to The Silicon Review’s “20 Fastest Growing Big Data Companies of 2016.” ... needs of end users facing some of the most complex data challenges in the ...
(Date:4/27/2016)... ... , ... The Pittcon Organizing Committee is pleased to announce that Charles “Chuck” ... of Committee since 1987. Since then, he has served in a number of key ... for both the program and exposition committees. In his professional career, Dr. Gardner is ...
(Date:4/27/2016)... 2016 NanoStruck Technologies Inc. ... ( Frankfurt : 8NSK) gibt bekannt, ... 13. August 2015 die Genehmigung von der CNSX ... 200.000.000 Einheiten auf 400.000.000 Einheiten zu erhöhen, um ... wurden 157.900.000 Einheiten mit dem ersten Teil der ...
Breaking Biology Technology: