Navigation Links
UCLA researchers reconstitute enzyme that synthesizes cholesterol drug lovastatin
Date:11/3/2009

Researchers from the UCLA Henry Samueli School of Engineering and Applied Science have for the first time successfully reconstituted in the laboratory the enzyme responsible for producing the blockbuster cholesterol-lowering drug lovastatin.

The research, published Oct. 23 in the journal Science, could potentially lead to the development of other compounds with similarly beneficial effects.

The lovastatin-synthesizing enzyme is one of the most interesting but least understood of the polyketide synthases, which are found in filamentous fungi and which play a crucial role in the synthesis of "small molecule natural products" pharmacologically or biologically potent compounds produced by living organisms, many of which are the active ingredients in pharmaceuticals.

Commonly used antibiotics, such as tetracycline, are produced by polyketide synthases. Polyketides represent a class of 7,000 known structures, of which more than 20 are commercial drugs, including the immunosuppressant rapamycin, the antibiotic erythromycin and the anticancer drug doxorubicin.

"In this study, we studied the enzyme that makes a small-molecule precursor to lovastatin. And what's really different about this enzyme, compared to all other enzymes people have studied, is that this enzyme is extraordinarily large," said Yi Tang, associate professor of chemical and biomolecular engineering. "It's one of the largest enzymes ever to be reconstituted in a test tube. It is 10 times the size of most enzymes people study."

The enzyme used in Tang's study has seven active sites and catalyzes more than 40 different reactions that eventually result in an important precursor to lovastatin.

By understanding how this large assembly line works, Tang's team hopes to retune the assembly line to be able to produce other natural products something nature doesn't currently do.

"It's like having an assembly line with seven stations, and in one round you have to go through a combination of these seven stations. Remarkably, this enzyme uses the assembly line eight times to make this small molecule every time, it uses a different combination of the individual stations," Tang said. "So the large enzyme is programmed to utilize these stations differentially at every cycle, in different combinations, and now we can do it in a test tube."

Tang's team has been able to recapture all of the steps needed to make the lovastatin precursor molecule. And with this, Tang hopes they will be able to disrupt, tweak and change some of the steps to make slightly different molecules that can be just as beneficial.

"It's biosynthetic engineering of an assembly line to make a molecule that nature doesn't make," Tang said. "So our eventual goal, once we understand how the enzyme works, is to rationally manipulate the individual stations or manipulate how a set of stations is used in each iteration to generate new compounds that nature doesn't make that will result in new activities, new molecules."


'/>"/>

Contact: Wileen Wong Kromhout
wwkromhout@support.ucla.edu
310-206-0540
University of California - Los Angeles
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... , April 28, 2016 First quarter 2016: ... up 966% compared with the first quarter of 2015 ... SEK 589.1 M (loss: 18.8) and the operating margin was 40% ... 0.32) Cash flow from operations was SEK 249.9 M ... revenue guidance is unchanged, SEK 7,000-8,500 M. The operating ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/15/2016)... , April 15, 2016  A new ... make more accurate underwriting decisions in a fraction ... timely, competitively priced and high-value life insurance policies ... screenings. With Force Diagnostics, rapid testing ... lifestyle data readings (blood pressure, weight, pulse, BMI, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... 23, 2016 , ... ClinCapture, the only free validated electronic ... showcase its product’s latest features from June 26 to June 30, 2016 for ... Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug Information ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, a division ... tuned and optimized exclusively for Okuma CNC machining centers at The International Manufacturing ... collaboration among several companies with expertise in toolholding, cutting tools, machining dynamics and ...
(Date:6/23/2016)... , June 23, 2016 ... research report to its pharmaceuticals section with historic ... details and much more. Complete report ... 151 pages, profiling 15 companies and supported with ... http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . The Global ...
(Date:6/22/2016)... , June 22, 2016 Research and ... Global Markets" report to their offering. ... billion in 2014 from $29.3 billion in 2013. The market is ... of 13.8% from 2015 to 2020, increasing from $50.6 billion in ... projected product forecasts during the forecast period (2015 to 2020) are ...
Breaking Biology Technology: