Navigation Links
UC Riverside receives grant for global health and development research
Date:5/9/2012

RIVERSIDE, Calif. (www.ucr.edu) The Bourns College of Engineering at UC Riverside announced today (May 9) that it is a Grand Challenges Explorations winner, an initiative funded by the Bill & Melinda Gates Foundation. Hideaki Tsutsui, an assistant professor of mechanical engineering, will pursue an innovative global health and development research project, titled "A Biotic Stress Sensor Printed on Maize Leaves."

Grand Challenges Explorations (GCE) funds individuals worldwide to explore ideas that can break the mold in how we solve persistent global health and development challenges. Tsutsui's project is one of over 100 Grand Challenges Explorations Round 8 grants announced today by the Bill & Melinda Gates Foundation.

"Grand Challenges Explorations encourages individuals worldwide to expand the pipeline of ideas where creative, unorthodox thinking is most urgently needed," said Chris Wilson, director of Global Health Discovery and Translational Sciences at the Bill & Melinda Gates Foundation. "We're excited to provide additional funding for select grantees so that they can continue to advance their idea towards global impact."

To receive funding, Tsutsui and other Grand Challenges Explorations Round 8 winners demonstrated in a two-page online application a bold idea in one of five critical global heath and development topic areas that included agriculture development, immunization and nutrition. Applications for the current open round, Grand Challenges Explorations Round 9, will be accepted through May 15, 2012.

Tsutsui's project is designed to develop a low-cost method of directly printing biosensors on maize leaves for colorimetric detection of biotic stresses. Maize (known in many English-speaking countries as corn) is one of the most widely grown staple crops in Sub-Saharan Africa and often suffers from significant loss at both pre- and post-harvest stages due to biotic stresses such as viruses, fungi, bacteria, insects and other pests and pathogens. Whereas means to improve protection of maize crops, including adoption of improved seed varieties, use of fertilizers, and application of pesticides, are available, they are not widely employed by small farmers in many countries in the region due to their high cost.

Tsutsui and his research group will design a self-inking biosensor stamp that will print a colorimetric "paper test" directly onto live maize leaves. Like a home pregnancy test, which detects human chorionic gonadotropin and displays visible lines on a paper strip, the printed biosensor will detect biotic stress markers such as fungal toxins in the plant vascular system and display graphic indicators, visually alarming the farmers to take quick and appropriate action to segregate or treat affected plants. Such a simple, low-cost, and easy-to-use method of monitoring biotic stresses could help the small farmers preventing disastrous loss of a staple food and a dominant income source and have great impact on food security of the region.


'/>"/>
Contact: Sean Nealon
sean.nealon@ucr.edu
951-827-1287
University of California - Riverside
Source:Eurekalert

Related biology news :

1. UC Riverside plant cell biologist receives top scientific honor
2. Fair to bring future scientists and engineers to UC Riverside
3. UC Riverside bug expert visits Rwanda to solve mystery surrounding specialty coffee sector
4. UC Riverside scientists release natural enemy of Asian citrus psyllid
5. 4 UC Riverside researchers receive national recognition
6. UC Riverside plant biotechnologist receives prestigious Jefferson Science Fellowship
7. UC Riverside neuroscientists discovery could bring relief to epilepsy sufferers
8. UC Riverside licenses leading South African company to market GEM avocados
9. Fellowship to UC Riverside botanist encourages Hispanic students to take up research
10. UC Riverside biologist elected to American Academy of Arts and Sciences
11. New citrus variety released by UC Riverside is very sweet, juicy and low-seeded
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... -- First quarter 2016:   , Revenues ... first quarter of 2015 The gross margin was 49% ... and the operating margin was 40% (-13) Earnings per ... from operations was SEK 249.9 M (21.2) , Outlook ... 7,000-8,500 M. The operating margin for 2016 is estimated ...
(Date:4/15/2016)... -- Research and Markets has announced the ...  report to their offering.  ,      ... gait biometrics market is expected to grow at ... Gait analysis generates multiple variables such ... compute factors that are not or cannot be ...
(Date:3/29/2016)... Florida , March 29, 2016 ... the "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased ... in ink used in a variety of writing instruments, ... Buyers of originally created collectibles from athletes on LegacyXChange ... forensic analysis of the DNA. Bill ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... Brooklyn, NY (PRWEB) , ... June 24, 2016 , ... ... 15mm, machines such as the Cary 5000 and the 6000i models are higher end ... height is the height of the spectrophotometer’s light beam from the bottom of the ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
(Date:6/23/2016)... June, 23, 2016  The Biodesign Challenge (BDC), a ... ways to harness living systems and biotechnology, announced its ... in New York City . ... students, showcased projects at MoMA,s Celeste Bartos Theater during ... , MoMA,s senior curator of architecture and design, and ...
(Date:6/23/2016)... 2016 Apellis Pharmaceuticals, Inc. today announced ... of its complement C3 inhibitor, APL-2. The trials ... dose studies designed to assess the safety, tolerability, ... in healthy adult volunteers. Forty subjects ... single dose (ranging from 45 to 1,440mg) or ...
Breaking Biology Technology: